1) weak singularity
弱奇异性
1.
By using modified conditions for dominant function,we establish extended dominated convergence theorem and obtain an application to integral operators with weak singularity, which simplifies the proof of the classical conclusion.
本文研究了一类推广的控制收敛定理及其应用,利用对控制函数满足条件的修改,建立了推广的控制收敛定理,获得其在弱奇异性积分算子中的应用,简化了经典结论的证明。
2) weak singular integral kernel
弱奇异性积分核
3) weakly singular element
弱奇异元
1.
The concepts of weakly singular element and weakly singular lgroup are introduced and the descriptions of them are established, by the way we study the properties and related structure of general weakly singular lgroups and partly improve the results of singular lgroups.
引入弱奇异元及弱奇异l-群的概念,通过建立弱奇异元及弱奇异l-群的刻划,研究了一般弱奇异l-群的性质及相关的结构,部分地改进了有关奇异l-群已有的结果。
2.
The concept of weakly singular elements is introduced in this paper.
引入了弱奇异元的概念,得到了若干重要性质和相关结果:1 L的每个非零元是弱奇异元当且仅当L∈A;2 L∈FS,则L的一个非零元g是弱奇异元当且仅当g是有限个基元素的并。
4) Weakly singular kernel
弱奇异核
1.
The paper introduces a new method,a numerical inversion method based on Laplace transform,which can obtain a numerical solution to Volterra integro-differential equations with weakly singular kernel.
给出了一种求一类带弱奇异核Volterra积分微分方程的数值新方法,即基于Laplace变换的数值逆方法,并给出了数值例子。
5) Weak singularity
弱奇性
1.
Numerical examples find the method is more convenient and efficient for a kind of free boundary problems of parabolic equation with weak singularity in the initial value.
数值试验表明,该方法在求解抛物型方程一类初值带有弱奇性的自由边界问题时十分灵活有效。
6) Weakly Singular Kernels
弱奇性核
1.
Application of Quadrature Methods and Regularization Methods to the Numerical Solution of First Kind Volterra Integral Equations with Weakly Singular Kernels;
在积分方程的数值处理中,有很大一部分方程是第一类的Volterra积分方程,而且在实际的物理背景下,很多是带有弱奇性核的。
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条