1) group kernel normal system

群核正规系
1.
Then we study the idempotent-separating congruences on the orthogroups with group kernel normal systems and give it a simple rep.
利用群核正规系讨论了纯正群的幂等元分离同余。
2) kernel normal system

核正规系
1.
In this paper,we describe congruences on V-regular semigroups and V-orthodox semigroups by kernel normal systems approach and kernel-trace ap-proach, and study eventually regular congruences on E-inversive semigroups by kernel normal systems approach.
本文利用核正规系法和核迹法刻画V-正则半群和V-纯正半群上的同余,并利用核正规系法研究E-反演半群上的毕竟正则同余。
3) normal system of subgroups

子群正规系
4) P-kernel normal system

P-核正规系
1.
We prove that any regular P-congruence on S(P) can present a P-kernel normal system.

令S(P)为P-反演半群,本文借助于P-核正规系来刻画S(P)上的强P-同余,证明了S(P)上的任一正则P-同余可以决定S(P)的一个P-核正规系;反之,S(P)的任一P-核正规系可以决定S(P)上的一个正则P-同余。
5) partial kernel normal system

部分核正规系
1.
This paper first introduces the concepts of regular P-congruences and partial kernel normal system on S(P),then gives the regular P-congruences on S(P)an abstract characterization by means of the partial kernel normal system and a necessary and sufficient condition for a set B={B_i∶i∈I}of pairwise disjoint subsets of S(P)which is a partial kernel normal system in S(P)with P∩B_i as its C-set.
首先介绍了S(P)上的正则P-同余和部分核正规系的概念。
6) characteristic kernel nor-mal system

特征核正规系
补充资料:局部正规群
局部正规群
locally normal group
局部正规群〔1优叨yl盆比比.Ign,平;加K幼研。.帅M幼研四rPyunal 一个群G,其中任何有限子集皆包含在G的一个有限正规子群(nonna】subgroup)中. 王杰译石生明校
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条