1) d-dimensional fractional Brownian motion
d维分数Brown运动
1.
This paper obtains functional modulus of continuity for d-dimensional fractional Brownian motion in Holder norm via estimating large deviation probabilities for d-dimensional fractional Brownian motion in Holder norm.
通过估计d维分数Brown运动在Holder范数下的大偏差概率,得到了分数Brown运动的连续模性质。
3) 2 α-fractional Brownian motion
2α-分数Brown运动
4) k-dimensional Brownian motion
k-维Brown运动
1.
In this paper, we study the functional sample path properties for k-dimensional Brownian motion, and by the method of establishing large deviation formulas in topology of high-dimensional functions’s space generated by uniform norm, obtain the functional laws of iterated logarithm for k-dimensional Brownian motion.
本文研究了k-维Brown运动的泛函样本轨道性质。
6) fractional Brownian motions
分式Brown运动
1.
The Fractal Dimensions of the Fractional Brownian Motions;
分式Brown运动的分形维数
补充资料:Brown运动
Brown运动
Rrownian motion
Bn”月n运动{Rn口胃nian moti佣;EPo脚oBeKo「o夏B”撇H““I.POUecc} 悬浮在液体或‘〔体中的微小粒厂受介质中分子的碰撞做不规则的运动所形成的过程有几种描述这-运动的数学模型甲!,.在随机过程理论中最重要的Browrl运动的模型是所谓的Wieoer过程(Wiener Pro-Cess),并且Brown运动的概念常常等同于这一模型.t补注】亦见wioner测度(Wiencr measure)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条