说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 有序域
1)  ordered field
有序域
1.
If the above geometry satisfies also the axioms of order,then we obtain a geometry which is isomorphic to projective geometry over a ordered field.
同构于域上的射影几何,若添加顺序公理,则得到同构于有序域上的射影几何的几何。
2.
In this paper, we difine the affine geometry on a ordered field,than prove that it satisfiedthe axiom of incidence, ordered and parallel of the Hilbert axiom system of geometry Thenwe difine the Euclidean geometry on Pythagoras field and prove that it satisfied farther theaxiom of congruence.
在本文中我们将定义有序域上的仿射几何,并证明它满足Hilbert几何公理体系的结合公理,顺序公理和平行公理。
3.
Let Ω_F be the quaternary division ring imbedded by the ordered field F.
设F为有序域,Ω_F是由F扩充而得的四元数除环。
2)  weakly ordered field
弱有序域
3)  local magnetic ordering
局域磁有序
4)  Ordered Closed R-neighborhoods
有序闭远域
5)  order neighborhood semantics
有序邻域语义
1.
Secondly,we introduce the order neighborhood semantics,give the frame conditions of the character axioms and inference rules of AKC,prove the frame soundness of AKC with respect to the frame conditions.
其次,我们引入有序邻域语义,给出描述AKC的特征公理和推理规则的框架条件,证明AKC相对这些框架条件是框架可靠的。
6)  archimedically ordered field
阿基米德有序域
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)

伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条