1) 4-connected graph

4连通图
1.
In this paper by ananlyzing the properties of edge-vertex cut end we show that in a 4-connected graph G with minimum degree at least five or girth at least four,there are at least two removable edges in a spanning tree of G;in a 4-connected graph G with minimum degree at least five,there are at least two removable edges outsi.
利用边点割端片的性质给出某些4连通图中在特定子图上可去边的分布情况,得到了最小度至少为5或围长至少为4的4连通图中在其生成树上存在至少两条可去边;同时也得到了最小度至少为5的4连通图中在其生成树外存在至少两条可去边。
2) 4-strong tournaments

4-强连通竞赛图
3) critically 4-connected graph

临界4连通图
1.
In this paper,the properties of the maximal critically 4-connected are iscussed and a new procedure for constructing the maximal critically 4-connected graph is determined by means of graphical pasting.
引入图的粘合的概念,讨论了极大临界4连通图的性质,给出了一个图是这类图的一个充分必要条件,由此给出该类图的一种新的构造方法。
4) maximal 4-connected graph

极大4连通图
5) 4-Edge connected simple graphs

4-线连通简单图
6) 4-connected

4-连通
1.
Let G be a 4-connected tough graphs of order n,if σ_5(G)≥n+C(G)-1,then every longest cycle in G is a dominating cycle.
设G为4-连通1-坚韧的n阶非Ham ilton图,C为G的最长圈,若σ5(G)≥n+C(G)-1,则C是G的控制圈。
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条