1) 2-local derivation
2-局部导子
1.
In this paper,we prove that every 2-local derivation from any symmetric digraph algebra into itself is a derivation.
本文证明了对称digraph代数上的每一个2-局部导子都是导子,并给出一个例子说明该结论在非对称digraph代数上不成立。
2.
A mapping θ:A →M is called 2-local derivation if for every pair a,b∈A there is a derivation θa,b :A such that , θa,b(a)=θ(a),θa,b()b=θ(here, θ is not supposed to be linear).
设A是一个代数,M是一个A-双模,映射θ:A→M称为2-局部导子,如果任给,存a,∈A,存在导子θa,b:A→M使得θa,b(a)=θ(a), (θ没有假设是线性的和满的)。
2) 2-local φ-derivation
2-局部φ-导子
1.
We prove that every local φ-derivation and every 2-local φ-derivation on AlgL is a φ-derivation.
文章证明了AlgL上的每个局部φ-导子和每个2-局部φ-导子,每个双局部导子是导子。
3) local derivation
局部导子
1.
Meanuhice,we obtain the necessary and sufficient conditions that derivation,local derivation,semi-local generalized derivation,bilocal derivation,kernel-range preserving mapping are true on this subalgebra.
等价刻画了M3(C)中代数A的导子,局部导子,半局部广义导子,双局部导子,保核值映射。
2.
In this paper, first, we prove that the local derivations on JBW-algebras are derivations, next, we give an example to show that the local inner derivation may not be in-ner derivation, last, we give a sufficient and necessary condition to JBW-algebras such that all local inner derivations on such JBW-algebras are inner derivations
本文证明了JBW-代数上的局部导子是导子,举反例说明了JBW-代数上的局部内导子未必是内导子,并且给出了JBW-代数的一个充要条件使得它上的局部内导子是内导子
3.
If A is a Cartan bimodule algebra of a von Neumann algebra B with Cartan subalgebra D,M is a σ weakly closed A bimodule containing A in B, then every local derivation from A into M is a derivation.
设A是具有Cartan子代数D的vonNeumann代数B中的Cartan双模代数,M是B中含A的σ-弱闭的A-双模,则从A到M中的局部导子是导
4) bilocal derivation
双局部导子
1.
Meanuhice,we obtain the necessary and sufficient conditions that derivation,local derivation,semi-local generalized derivation,bilocal derivation,kernel-range preserving mapping are true on this subalgebra.
等价刻画了M3(C)中代数A的导子,局部导子,半局部广义导子,双局部导子,保核值映射。
5) local φ-derivation
局部φ-导子
1.
Using projection operators in algebra of subspace lattice,firstly it is proved that every norm continuous local φ-derivation on a FCIN algebra is a φ-derivation.
研究了复可分Hilbert空间上有限宽格代数和完全分配的CSL代数上的局部φ-导子。
2.
We prove that every local φ-derivation and every 2-local φ-derivation on AlgL is a φ-derivation.
文章证明了AlgL上的每个局部φ-导子和每个2-局部φ-导子,每个双局部导子是导子。
6) T-Local Derivation
T-局部导子
1.
T-Local Derivations on Certain CSL Algebras;
一类CSL代数上的T-局部导子
补充资料:有子
有子 有子 生理学名词。《素问·阴阳别论》:“阴搏阳别,谓之有子。”有子即妊娠。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条