1) hyporegularity
次正则
2) graded regular ring
分次正则环
1.
In this paper, we study the property of graded quasi-regular rings, and consider the condition that a graded quasi-regular ring becomes a graded regular ring.
将分次正则环的概念推广到分次拟正则环上 ,研究了分次拟正则环的若干重要性质 ,并给出了分次拟正则环成为分次正则环的条
2.
In this paper, We discuss some properties of graded regular rings and give a structure theorem of graded regular rings.
讨论了分次正则环的若干性质,并给出了分次正则环的一个结构定理。
3) graded regular radical
分次正则根
4) regular graph of degree n
n次正则图
5) homogeneous Hamilton canonical equation
齐次Hamilton正则方程
6) graded Von Neumann regular ring
分次Von Neumann正则环
1.
We prove that S is a graded right V-ring if and only if R is a graded right V-ring,S is graded PS-ring if and only if R is a graded PS-ring,and S is a Von Neumann regular ring if and only if R is a graded Von Neumann regular ring.
本文引进了分次环的分次Excellent扩张概念,设S=⊕_(g∈G)S_g是R=⊕_(g∈G)R_g的分次Excellent扩张,证明了S是分次右V-环当且仅当R是分次右V-环,S是分次PS-环当且仅当R是分次PS-环,S是分次Von Neumann正则环当且仅当R是分次Von Neumann正则环。
补充资料:凡事豫则立,不豫则废
1.谓做任何事情,事先谋虑准备就会成功,否则就要失败。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条