1)  Noether N-semisimple ring
					
	
					
				
				
	
					
				Noether N-半单环
				1.
					N-semisimple rings,Noether N-semisimple rings and some special rings;
					
					
						
						
					
						N-半单环、Noether N-半单环和几类特殊环
					
					2)  noetherian ring
					
	
					
				
				
	
					
				Noether环
				1.
					Properties of Noetherian ring;
					
					
						
						
					
						Noether环理想的性质
					2.
					The quasi-finitistic dimension condition over noetherian ring was introduced and its some applications were given.
						
						给出了维数有限性条件的一个推广,引入了准维数有限性条件并给出了Noether环上准维数有限条件的一些应用。
					3.
					In this paper, the concept of symbolic power of primary idea isproposed, and we give the following result:Let R be Noetherian ring with identity, Q (≠R) is a P- primary ideal of R,S = R\P, then (n) = (O)s, where the intersection is taken over all symbolic Power of primary ideal Q.
						
						本文提出了Noether环中准素理想的符号幂的概念,同时建立了如下定理:设R是一个有单位元的Noether环,Q是R的一个异于R的P-准素理想,S=R/P,则Q的一切符号幂的交为(O)s。
					
					3)  Noether ring
					
	
					
				
				
	
					
				Noether环
				1.
					In this paper,some new characterizations of N-semisimple rings are given,it is proved that a Noether N-semisimple ring is a semisimple ring,and Noether rings,semisimple rings,QF-rings are discribed by N-projective modules and N-injective modules.
						
						给出了N-半单环的新特征,证明了Noether N-半单环是半单环,利用N-投射模和N-内射模刻画了Noether环、半单环和QF-环。
					
					4)  Noether-ring
					
	
					
				
				
	
					
				Noether-环
				1.
					The object of this paper is to prove theoreml: Commutative ring R is DI - ring if and only if R is Hereditary - ring and Noether-ring.
						
						若环R可换,则R是DI-环(?)是Hereditary-环和 Noether-环;2。
					
					5)  Right Noetherian semigroup ring
					
	
					
				
				
	
					
				右Noether半群环
			
					6)  Noetherian semilocal ring
					
	
					
				
				
	
					
				Noether半局部环
	补充资料:半单环
		半单环
semi-ample ring
半单环[脚‘一滋田户d硬弓;助Jl”lpoc功“““城。1 根为零的环R.更确切地说,如果r是某种根(见环与代数的根(正山司ofnn乡anda」9 ebn玲)),环R称为;半单的(卜~一s如p卜),是指r(R)“O通常人们将结合半单环理解为经共牛早环、。。~。一仁,漏司户6n。、.月.A.cxOP朋K邹撰冯绪宁译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
	参考词条