1) higher order differential variational principle

高阶微分变分原理
2) differential variational principle

微分变分原理
1.
In this paper, the differential variational principles of mechanical systems in the event space are studied.
研究事件空间中力学系统的微分变分原理。
2.
The Noethers theorem and the Noethers inverse theorem for the above systems, which is based upon the invariance of the differential variational principle under the infinitesimal transformations of group, is then obtained.
首先提出了事件空间中单面约束系统的D Alembert Lagrange原理 ;其次基于微分变分原理在群的无限小变换下的不变性 ,研究并给出事件空间中单面约束系统的Noether定理及逆定理 ;最后举例说明结果的应用 。
4) high order differentiator

高阶微分器
1.
Based on the idea, the high order differentiator (HOD) that is well able to extract differential and high order differentials of measured .
基于这种思想设计了能高品质地提取量测信号的微分和高阶微分的高阶微分器 (HOD ,high order differentiator) ,该HOD参数少 ,容易调节 ,并给出其稳定性、收敛性和滤波特性的证明 ;另外 ,对带有未知扰动、模型未知的非线性SISO和MIMO系统分别设计了基于HOD的高阶微分反馈自适应控制器 (HODFC ,high order differentials feedback adaptive controller) ,给出了闭环系统稳定性和鲁棒性分析 ,并且实现了线性化解耦控
5) high-order PDE

高阶偏微分
1.
Based on analysis the shortages in Tikhonov,total variation and higher order partial difference models,a novel algorithm is proposed by combining the total variation model and high-order PDE ones.
针对传统图像放大处理过程中基于线性插值方法通常导致边缘模糊问题,分析了Tikhonov模型、全变差模型和高阶偏微分模型在图像处理中的优缺点,提出了一种全变差和高阶偏微分模型自适应结合的图像放大模型及推导算法。
6) higher order differentiation

高阶微分法
补充资料:变分原理(复变函数论中的)
变分原理(复变函数论中的)
omplex function theory) variational principles (in
f日In}F(O(只,t),0)l}乙+:d乙=】nll,—}——,厂:’、一几t)〔.匕,日亡卜OC一“C’日当r,0时下*(:、,t)/:在B*的紧子集上一致地趋于0(k一1,2).该结果已被推广到二连通区域(13」).若加以进一步的限制,就能得到映射函数在B、(t)内关于表征所考虑区域边界形变的参数的展开式余项的估计式(在闭区域内一致)(【4」).份卜注】存在大量的变分原理,见【A3}第10章.亦可见变分参数法(variation一parametrie nlethod);肠”ner方法(幼wner Tnetl〕ed);内变分方法(internalvariations,服t】1‘对of). 还可见边界变分方法(boundary variations,me-tll‘xlof).M.schiffer对单叶函数的变分方法做出了重要的贡献,见〔A3」第10章.变分原理(复变函数论中的)Ivaria石0“目州址妙es(加e网Plex五叮‘6佣山印ry);。即“a双“OHH从e nP一”u“nHI 显示在平面区域的某些形变过程中那些支配映射函数变分的法则的断语. 主要的定性变分原理是ljxlelbf原理(Linde场fpnnciPle),可描述如下.设B*是z*平面上边界点多于一点的单连通区域,06B*,k=1,2;设二(;,B*)是对于B*的Green函数的阶层曲线,即圆盘王心川C!<1}到B*而使原点保持不变的单叶共形映上映射下圆周C(r)二{乙:{心}二;}的象,o<;<1.进而设函数f(:,)实现B,到B:的共形单射,f(0)‘O,在这些假定下有:l)对于L(:,B,)上任一点:?,存在位于阶层曲线L(:,BZ)上(这仅当f(B,)二BZ才有可能)或其内部的一点与之对应;及2){f’(0)1蕊}夕‘(0)},其中g(:,)满足g(0)二o是Bl到 BZ的单叶共形映射(等号仅当f(B1)=B:时成立).Lindebf原理系从Rien坦nn映射定理(见Rle-n.lln定理(Rierl飞幻In theorem))与Sdlwarz引理(Schwarz lemrr必)推出.相当精细的构造使之能够求出由被映射区域的给定形变所引起的映射函数的逐点偏差. 定量的基本变分原理系由M.A.几aBpeHTbeB(〔1」)获得(亦可见【2]),可叙述如下,设B:是具有解析边界的单连通区域,0任B!.假定存在给定区域族B,(r),0‘Bl(r),0(t蕊T,T>O,B;(0)二B,,具有JOrdan边界rl(t)={:一z,=0(之,t)},0(又续2兀,0(0,t)二Q(2二,r),其中Q(又,r)关于t在t二O可微且对又是一致的;设F(::,t),F(0,t)=0,F:.(0,t)>O,是把B,(t)单叶共形映射为BZ二{22:I:21
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条