1)  Lévy-Feller advection-dispersion equation
					 
	
					
				
				 
	
					
				Lévy-Feller对流-扩散方程
				1.
					Using Laplace and Fourier transform,the analytic solution of the Lévy-Feller advection-dispersion equation was derived by the corresponding Green s function.
						
						考虑Lévy-Feller对流-扩散过程,应用Laplace和Fourier变换及其逆变换导出了用格林函数表示的Lévy-Feller对流-扩散方程的解析解,结果中去掉对流项的特殊情况与Mainardi等的研究结果是一致的。
					
					2)  3-D advection and diffusion equation
					 
	
					
				
				 
	
					
				3D对流扩散方程
			
					3)  convection-diffusion equation
					 
	
					
				
				 
	
					
				对流扩散方程
				1.
					Comparative investigation of some high-order explicit schemes combined with QUICK for the convection-diffusion equation of pollutants;
						
						污染物对流扩散方程的几种新的高阶QUICK组合显格式比较研究
					2.
					Spline subdomain precise integration scheme for convection-diffusion equation with constant coefficient;
						
						一维常系数对流扩散方程的样条子域精细积分法
					3.
					H~1-Galerkin mixed element method for convection-diffusion equation;
					 
					
						
						 
					
						对流扩散方程H~1-Galerkin混合有限元方法
					
					5)  convection diffusion equation
					 
	
					
				
				 
	
					
				对流扩散方程
				1.
					Multigrid method based on the high accuracy full implicit scheme of the convection diffusion equation;
						
						二维对流扩散方程的高精度全隐式多重网格方法
					2.
					Implicit difference method for the 3-D unsteady convection diffusion equation
					 
					
						
						 
					
						求解三维非定常对流扩散方程的隐式差分方法
					3.
					High-order difference method for the unsteady convection diffusion equation
					 
					
						
						 
					
						求解非定常对流扩散方程的高精度差分格式
					
					6)  diffusion-convection equation
					 
	
					
				
				 
	
					
				对流扩散方程
				1.
					Solving one dimension diffusion-convection equation by Excel;
					 
					
						
						 
					
						用Excel快速求解一维非稳态对流扩散方程
					2.
					The algorithm of combined difference quotient for diffusion-convection equations is proposed.
						
						给出了求解对流扩散方程的组合差商算法,所导出的显式差分格式其精度为o(τ2 +h2 ) ,对从对流占优到扩散占优的问题都有较好的适应性,并可针对不同的情况选取不同的参数得到尽可能大的稳定性条件。
					3.
					An alternative segment method for solving diffusion-convection equations is given using Crank-Nicolson scheme and Saul’yev type asymmetric difference schemes.
						
						结合Crank-Nicolson格式和第二类Saul’yev非对称格式,设计求解对流扩散方程的交替分组显式方法。
					补充资料:对流扩散
		分子式:
CAS号:
性质:在湍流流体中,物质的传递既靠分子扩散也靠涡流扩散,合称对流扩散。
		
		CAS号:
性质:在湍流流体中,物质的传递既靠分子扩散也靠涡流扩散,合称对流扩散。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
	参考词条