说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Rudin引理
1)  Rudin lemma
Rudin引理
2)  Rudin technique
Rudin法
3)  Shaprio-Rudin sequence
Shaprio-Rudin序列
4)  Rudin property
Rudin性质
1.
For a general subset system Z, the Rudin property is denned and its characterization in mapping forms are given.
对一般子集系统 Z,引入了 Rudin性质,给出了它的映射式刻划,作为拟连续偏序集和Z-连续偏序集的公共推广,引入了拟Z-连续Domain的概念,讨论了拟Z-连续Domain的基本性质,特别地,给出了 Rudin性质及其映射式刻划在拟 Z-连续Domain方面的若干应用,将关于拟连续偏序集的主要结果推广至了拟 Z-连续 Domain情形。
5)  strong Rudin property
强Rudin性质
6)  Rubin-Shapiro function
Rudin-Shapiro函数
补充资料:施瓦茨引理

施瓦茨引理

数学上,施瓦茨引理是复分析关于定义在单位开圆盘的全纯函数的一个结果,以赫尔曼·阿曼杜斯·施瓦茨为名。

设<math>\delta = \{z: | z | < 1\}</math>为复平面中的开圆盘,<math>f:\delta\to\delta</math>是全纯函数,并有f(0)=0。那么

<math> | f(z) | \le | z |</math>

对所有在<math>\delta</math>中的<math> z</math>,以及<math> | f'(0) | \le 1</math>。如果等式

<math> | f(z) |=| z |\,</math>

对任意z≠0成立,或

<math> | f'(0) |=1\,</math>,

那么<math> f</math>是一个旋转:<math> f(z)=az</math>,其中<math> | a |=1</math>。

这引理不及其他结果有名(例如黎曼映射定理,其证明有用到这引理),但是这是能显示全纯函数的严格性的一个简单结果。当然对于实函数没有类似的结果。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条