说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 线性误差函数
1)  linear error function
线性误差函数
2)  error function
误差函数
1.
A study of decision feedback blind equalization algorithms based on different error functions;
基于不同误差函数的判决反馈水声信道盲均衡算法
2.
A structural damage identification method based on sensitivity analysis of modal parameter error function;
基于模态误差函数灵敏度分析的损伤识别方法
3.
Study on the methods for computing error function erf x;
误差函数计算方法的研究
3)  linear distortion function
线性偏差函数
4)  error solution
误差函数解
1.
The concentration curves of iron and nickel interface in the deep drawing steel strip are measured by electron-probe and simulated by error solution of diffusion equation.
首先假设扩散系数与浓度无关,根据电子探针的实验结果,采用无限大扩散偶模型,使用扩散方程的误差函数解对实验结果进行拟合,获得铁镍的互扩散系数;然后考虑扩散系数与浓度有关的一般情况,与常规的玻耳兹曼 俣野法相区别,采用最小二乘法对实验数据进行拟合处理,得到元素浓度分布的曲线方程,从而求得与浓度有关的互扩散系数。
5)  error function complement
余误差函数
1.
The definition of error function complement,the fixation process of laser printer and the corresponding defusion model are introduced.
介绍了余误差函数的定义,激光打印机的定影过程和与定影过程相对应的扩散模型,阐述了余误差函数的数值计算对设计激光打印机定影过程的重要性,并指出了已有文献给出的余误差函数的数值计算方法的局限性,在此基础上,分析了3种可行的数值计算方法:查表法、近似计算法和利用Excel中的工程函数直接计算法,并对每种方法进行了比较,最后确定了一种有效可行而且简洁的数值计算方法,解决了激光打印机定影中的实际问题,提高了工程设计效率。
6)  error-sum function
误差和函数
1.
In this paper,we consider the error-sum function of Engel-continued fraction.
本文研究了Engel展式误差和函数,运用数学分析方法,获得了误差和函数的连续性和界值定理,从而知道该函数的图像是一个分形图。
2.
In this paper, we introduce the error-sum function of decimal expansion.
研究了十进制误差和函数,利用分形几何的方法,得到了误差和函数的积分值,介值定理以及其图的Hausdorff维数。
3.
In this paper, we consider the error-sum function of Lüroth series expansion.
本文研究了L櫣roth展式的误差和函数。
补充资料:函数逼近,线性方法


函数逼近,线性方法
pproximation of functions, Mnear methods

  函数通近,线性方法【即pro劝ma柱佣of如口比此,Unearmethds;即面.橄...中伸叫浦月.州白.eM曰’O周曰!甲的-习..‘。侧.1由线性算子所定义的逼近方法.如果在赋范线性空间X中将线性流形(线性子空间)选作逼近集,则任何将函数f任X变换成函数U汀,t)=(Uf)(t)‘灾且满足’一U(。:f,+。2f2,r)=。IU汀,,t)+aZU价,r)(其中“1和气为任意数)的线性算子U均定义了灾中函数对X中函数的一种线性逼近方法(1i ncar approxi-mation method).一个线性逼近方法称为是射影的(P rojeCtive)如果对所有fe贝,U以t)=f(O;称为是正的(户犯itive),如果对非负函数f有U(f,r))0. 最有意思的是有限维数的情形.此时,若贝二贝、是N维子空间,则有 八 U以‘)=饰以,)=艺e*汀)叭(,),(1) k二1其中{叭(t)}犷是灾、的基底,吼为定义在X上的线性泛函.线性无关系{叭(t)}犷和泛函集{q}仁的选取依赖于构造线性方法时所用函数的有关信息.如果几们二了仇)(这里{气片是f的定义域中的固定点组玉且叭(t.卜0,(i笋k),叭(tk)=1,则U从工气)=f(t*)伍=1,…,扔,此时得到一种插值方法(interpolation method)(如,Lag-ran罗插值多项式或播值样条(interpolation spline)).如果X=H是托lbert空间,吼汀)为函数f关于标准正交系{叭(t)}的Fourier系数,则(1)的右端的和式导致了X到贝N上的正交投影线性方法(li near methodoforthogonal Projection);此时, ,,介饰汀,”一萝…卜詹:一……。因此,可用函数叭的线性组合对f作最佳逼近. 线性逼近方法的理论中最引人注目的是收敛问题.令x为一Banach空间,{甲:(t),中2(t),…}是X上某个线性无关函数系,令灾N为这个系的前N(N=1,2,…个元素形成的子空间,叽为X到贝八N二1,2,…上的有界线性算子.对任何f‘X,收敛关系式珠以O~f(t)(在11叽一fllx~0(N~的)的意义下)成立,当且仅当:l)U、的范数列11叭}}有界,见B田.山-Stei曲aus定理(Banach一Steinhaus theorem):2)对于X中处处稠密的集合A上的所有函数f有认以t)一f(O.特别地,在周期为27r的函数空间乌=乌[0,2司(l  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条