1) Lozinskii measures of matrices
矩阵的Lozinskii测度
1.
In this paper stability criteria are obtained for nonlinear systems of ordinary differential equations by the methods involving the Lozinskii measures of matrices.
用矩阵的Lozinskii测度的方法,得到了非线性常微分系统的一些稳定性准则,导出了关于非线性系统x′=A(t)x(t)+R(t,x)稳定性的充要条件。
2.
In this paper stability criteria are obtained for linear systems of ordinary differential equations by the methods involving the Lozinskii measures of matrices.
本文用矩阵的Lozinskii测度的方法,得到了线性常微分方程系统的某些稳定性准则。
2) Lozinskii measures
Lozinskii测度
1.
In this paper,some sufficient conditions of the asymptotically stability for cellular neural networks are obtained by the properties of the Lozinskii measures and techniques of differential inequalities,and the boundedness of nonlinear activation functions is not required.
利用Lozinskii测度的性质以及微分不等式的技巧,得到了一些时滞细胞神经网络渐近稳定的充分条件,而且这些条件不需要非线性激活函数有界。
3) matrix measure
矩阵测度
1.
In this paper,a new approach based on the matrix measure theory is proposed.
文章提出了一种基于矩阵测度理论的分析方法。
2.
The paper discusses the degenerate differential system with delay and the sufficient conditions of the existence of its periodic solution with matrix measure and krasnoselskii s fixed point theorem.
本文研究了非线性退化时滞微分系统,用矩阵测度和Krasnoselsk ii不动点定理获得了其周期解存在的若干充分条件,并举例说明其应用。
3.
In this paper,we use the matrix measure technique to study globe exponential stability of cellular neural networks.
主要讨论使用矩阵测度法来研究细胞神经网络的稳定性,给出了细胞神经网络全局指数稳定的条件。
4) Lozinskii measure
Lozinskii度量
5) attribute measure matrix
属性测度矩阵
6) similar measure matrix
相似测度矩阵
补充资料:Carathéodory测度
Carathéodory测度
Carathe'odory measure
的度量空间M的一切子集类上的外测度(outer meas-ure),满足条件:当p(通,B)>0时 拜’(A UB)=拜’(A)+拜’(B).它是C .Carath改对ory引进的(【l」).集合E C=M属于群的定义域,即矿可测,当且仅当对一切A仁M,成立等式 拌’(A)=林‘(A门E)+科’(A门CE),此处eE=材\E.假如E是拜’可测,则杯(E)=拜‘(E).Carath叙记ory测度的定义域包含一切Borel集.假如矿是某度量空间所有子集类上的外测度,使每个开集均为矿可测,则矿是c盯ath白劝ory外测度.【补注】Carath亡odory外测度也时常称为度量外测度(metric outer measure),见【AI」.Carath亡目衅测度【Carath岭odory measure;枪脚1即-口叩.Me钾」 由Cara‘h的dory秒酬摩科‘(ou‘er Cara‘h胡orymeasure矿)诱导的测度,前者是指定义在(具有度量P)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条