1) Symmetric copositive matrix

对称双正矩阵
2) bisymmetric matrix

双对称矩阵
1.
In this paper,the inversable matrix solution of a kind of real matrix equation X~△AX=A is considered,where A is a inversable bisymmetric matrix,X~△is bisymmetric transposed matrix of X,and their general solution forms are derived; the bisymmetric solution of a kind of real matrix equation XAX=A is considered,and their general solution forms are derived too.
本文讨论了实矩阵方程X~△AX=A(A为非退化实双对称矩阵,X~△为X的双转置矩阵)的非退化解问题,并给出一般解的形式;同时讨论了实矩阵方程XAX=A的双对称解问题,并给出了一般解的形式。
2.
By this iterative method,the least squares bisymmetric solution can be obtained within finite iterative steps in the absence of round off errors,and the solution with least norm can be got by choosing a special initial bisymmetric matrix.
同时,也能够给出指定矩阵的最佳逼近双对称矩阵。
3.
This paper has discussed the generalized inverse eigenvalue problem of centrosymmetric matrix,anti-centrosymmetric matrix and bisymmetric matrix.
本文讨论了在谱约束条件下中心对称矩阵、反中心对称矩阵和双对称矩阵的一般化逆特征值问
3) bisymmetric matrices

双对称矩阵
1.
Least-square solutions of inverse problems for bisymmetric matrices;

一类双对称矩阵反问题的最小二乘解
2.
Least-squares solution for the inverse problem of real matrices、symmetric matrices and bisymmetric matrices are studied in this thesis.
本文研究了子阵约束下实矩阵、实对称矩阵和双对称矩阵反问题的最小二乘解,全文主要包括以下内容。
3.
thesis and mainly discuss the following problems:What we mainly discussed in the second chapter as follows:(1) S1,S2 are sets of symmetric orth-symmetric matrices;(2) S1,S2 are sets of bisymmetric matrices;(3) S1,S2 are sets of anti-.
S_1,S_2为双对称矩阵; 3。
4) symmetric and copositive matrix

对称双正阵
5) symmetric positive definite matrix

对称正定矩阵
1.
In 1970, the notion of unnecessary symmetric positive definite matrix was firstgiven by C.
Johnson在[1]中提出了未必对称的正定矩阵的概念(对任何0≠X∈Rn×1,都有X T AX>0),并得到了这种正定矩阵的某些不等式[2];1984年,佟文廷教授在[5]中提出了+PD n类广义正定矩阵的概念(存在正对角矩阵D ,使得对任何0≠X∈Rn×1,都有X T DAX>0),并得到了+PD n类广义正定矩阵的一些性质;1990年屠伯埙教授提出了亚正定矩阵的概念( A+ AT为对称正定矩阵),并建立了较为系统的亚正定理论[3]、[4]。
2.
xk+1=I-2a11+…+annAxk+2a11+…+annb,is constructed for the linear equation Ax=b,of which the coefficient is a symmetric positive definite matrix.
对系数为对称正定矩阵的线性方程组Ax=b,利用系数矩阵A主对角线上元素的和构造了一种新的收敛迭代格式xk+1=I-a11+…2+annA xk+a11+2…+annb,并进一步对这种格式进行了改进。
补充资料:对称矩阵
对称矩阵
symmetric matrix
对称矩阵[母吐朋etric matr议;c“MMeTPn、ec绷MaT-P“”al 一个方阵,其中关于主对角线位置对称的任意两个元素彼此相等,即矩阵A二}a,*{了等于它的转置矩阵: a,*,a*。,i,k二l,…,n. 一个n阶实对称矩阵恰有”个实本征值(按重数计算).如果A是一个对称矩阵,那么A一’和A矛也是对称矩阵,如果A与B是同阶的对称矩阵,那么A十B是对称矩阵,而AB是对称的,当且仅当AB二BA.T.C,flH侧K“Ha撰【补注l每一个复方阵相似于一个对称矩阵.一个(n xn)实矩阵是对称的,当且仅当其相伴算子R”~R”(关于标准基)是自伴的(关于标准内积).极分解(po址decolllPOsition)将矩阵A分解为一个对称矩阵与一个正交矩阵之积SQ. 令B:VxV~k是向量空间V上的一个双线性型(b山near fonn)(见双线性映射(bl址℃ar map·ping)).那么B的矩阵(关于这两个因子V的相同的基)是对称的,当且仅当B是一个对称双线性型(synln吮tric bilinear form),即B(“,v)“B(v,“).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条