1) ideally convex sets
理想凸集
2) ideal convexity
理想凸性
1.
The ordinary convexity,geometrical convexity,logarithmical convexity and the exponential convexity are mentioned in the first two sections;the ideal convexity,integral convexity and the β-convextiy are presented in the central three sections;for the more generalized convexties are briefly introduced in the last section.
本文第一节简述通常凸性概念及其在不等式理论方面的几个简单应用,第二节简介几何凸性、对数凸性、指数凸性及其与通常凸性之间的相互关系;第三节介绍集合与函数的理想凸性;第四节简介由笔者首创的积分凸性及其进展。
3) covex set theorem
凸集理论
4) ideally convex functional
理想凸泛函
5) bi-ideal subset
双理想子集
1.
In this paper, concepts of bi-filters a nd bi-ideal subsets of semi groups are introduced.
本文引进了半群的双滤子和双理想 子集的概念,借助主双理想子集在半群上定义了关 系t、t∞和ξt,利用关系t∞分别给 出了 完全半素双理想子集和主双滤子的一种刻划。
6) collective ideal
集体的理想
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条