说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 带随机误差的Ishikawa迭代序列
1)  Ishikawa iterative sequence with random errors
带随机误差的Ishikawa迭代序列
1.
Some necessary and sufficient conditions for strongly convergence of Ishikawa iterative sequence with random errors of fixed points for asymptotically pseudo-contraction mappings and asymptotically non-expansive mapping in real Banach spaces were given .
给出了实Banach空间中渐近伪压缩映象和渐近非扩张映象带随机误差的Ishikawa迭代序列强收敛于某不动点的充要条件,所得结果改进和推广了张石生、LiuQH等人的最新结果。
2)  modified Ishikawa iterative sequence with random errors
带随机误差的修正的Ishikawa迭代序列
1.
Some necessary and sufficient conditions are given for modified Ishikawa iterative sequence with random errors to converge to fixed points.
在一般实Banach空间中,研究有限个渐近伪压缩映象簇和有限个渐近非扩张映象簇的不动点的迭代逼近问题,给出带随机误差的修正的Ishikawa迭代序列强收敛的充要条件,所得结果改进和推广了朱玲娣(2002年),王朝和刘理蔚(2006年)等人的近期的相应结果。
3)  random Ishikawa iterative sequence with mixed errors
带混合误差的随机Ishikawa迭代序列
4)  Ishikawa iterative sequence with errors
带误差的Ishikawa迭代序列
1.
A sufficient and necessary condition is then given and proved for Ishikawa iterative sequence with errors to converge to fixed points.
针对Banach空间中有界凸集上的一致拟Lipschitzian映象S和T,给出并证明了S和T不必连续的带误差的Ishikawa迭代序列收敛到其公共不动点的一个充要条件。
2.
It is shown that the Ishikawa iterative sequence with errors converges strongly to the unique solution of the equation x+Tx =f.
本文证明了,带误差的Ishikawa迭代序列强收敛到方程x+Tx=f的唯一解。
3.
This paper is to introduce Φ-accretive operators-a class of operators which is much more general than the important class of φ-strongly accretive operators, and to study the existence of solution and the convergence of Ishikawa iterative sequence with errors for Φ-accretive operators.
本文引入Φ- 增生型算子———一类比重要的 φ- 强增生算子更一般的算子 ,并研究了Φ- 增生型算子方程解的存在性和带误差的Ishikawa迭代序列的收敛问题 。
5)  Ishikawa type iterative sequence with errors
带误差的Ishikawa型迭代序列
1.
Under more general condition for α_n and β_n ,it is shown that the Ishikawa type iterative sequence with errors converges strongly to x~* and it is also shown that the Ishikawa type iterative sequence with errors converges strongly to the unique solution of the equation Tx=f when T:E→E is a Lipschizian strongly accretive operator.
在关于{αn},{βn}为更广的条件下证明了带误差的Ishikawa型迭代序列强收敛于x*。
6)  Ishikawa iteration process with errors
带误差的Ishikawa迭代序列
1.
In this paper, Ishikawa iteration process with errors is defined for a sequnce of more generalized quasi contractive mappings in a convex metric space.
在凸度量空间内 ,对更广义拟压缩映射序列定义了带误差的Ishikawa迭代序列 ,证明了带误差的Ishikawa迭代序列收敛于更广义拟压缩映射序列的唯一公共不动点 ,并改进和推广了一些文献的主要结果 。
补充资料:随机误差
分子式:
CAS号:

性质:又称为偶然误差(accidental error)。由于测试过程中诸多因素随机作用而形成的具有抵偿性的误差。它是不可避免的,可以设法将其减少,但又不能完全消除。随机误差具有统计性,在多次重复测量中,绝对值相同的正、负误差出现的机会大致相同,大误差出现的机会比小误差出现的机会少。由于随机误差中正、负误差相互抵偿的特性,多次测量平均值的随机误差要比单次测量值的随机误差小,多次测量的随机误差的平均值趋向于零,因此不影响测量的准确度。随机误差使测量值产生波动,影响测量结果的精密度。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条