说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 二元线性算子
1)  bivariate linear operators
二元线性算子
2)  binary nonlinear operator
二元非线性算子
1.
Iterative solution for systems of non-monotone binary nonlinear operator equations;
非单调二元非线性算子方程组的迭代求解
3)  multivariable positive linear operators
多元线性正算子
4)  binary operator
二元算子
1.
In this paper,by using the Banach contraction mapping principle and the theory of cone,the existence and uniqueness theorems of fixed point for a class of abstract two binary operator in Banach spaces are obtained,which are no restriction of continuous or compact.
在Banach空间中,利用非线性分析中的锥理论和Banach压缩映像原理,在对算子不作任何连续性和紧性假设的条件下,得到了一类抽象二元算子藕合不动点的存在唯一性定理,所得结果改进统一了前人的许多成果,使得该结论更易于实际应用。
5)  two binary operators
二元算子
1.
Iterative solution for some classes of systems of nonlinear two binary operators equations in Banach spaces;
Banach空间中几类非线性二元算子方程组的迭代求解方法
2.
By using the cone theory and monotone iterative technique in nonlinear functional analysis,the existence and uniqueness of common fixed points for two nonlinear non-monotone two binary operators are discussed.
在Banach空间中,利用非线性泛函分析中的锥理论和单调迭代的方法,研究了两个非线性非单调二元算子的公共不动点的存在与唯一性,并给出了逼近公共不动点的迭代序列的误差估计式;然后作为应用,得到了Banach空间中的一类非线性积分方程组的解,改进了最近的一些结果。
6)  binary linear
二元线性
1.
Based on the regression analysis,binary linear regression equation related to fire and weather factors has been established.
应用回归分析,建立了火灾与气象因素的二元线性回归方程,给出了方程的剩余标准差,对方程的精度进行了检验。
补充资料:非线性算子半群


非线性算子半群
semi-group of non-linear operators

非线性算子半群【脚顽一,.平of咖~h粉盯卿rat份s;no,y印yll皿a He”HHe盆“以0“epaTopool定义并作用在B以朋ch空间(Banach sPace)X的闭子集C上的单参数算子族S(t),O落t<的,且具有下列性质: 1)S(t+:)x=S(t)(S(:)x),x〔C,t,:>0; 2)S(O)x二x,x‘C; 3)对任何x〔C,函数S(:)x(在X中取值)在【0,的)上是t的连续函数 半群S(t)是。型的,若 }Js(t)x一s(t)夕l}(e“‘}}x一夕}l,x,y‘e,t>0. 0型的半群称为压缩半群(conti公ction senu-grouP). 和线性算子半群(见算子半群(s。旧l一grouPofoperators”的情形一样,可引进半群S(t)的生成算子(罗nem山堪opemtor)(或无穷小生成元(i汕拍te-Sim司罗nerator))A。的概念: Sfh)x一x A。x二Um“、‘’产犷丹 一。一档乞人仅对那些使极限存在的元素义‘C来定义.若S(0是压缩半群,A。就是耗散算子.可以想到,Ba几Icll空间X中的算子A是耗散的(dissiPative),若对x,厂刀了牙),又>0,有}}x一y一又(Ax一Ay)“)“x一y}}.耗散算子可以是多值的,这时定义中的A义代表它在x处的任何值.一个耗散算子称为m耗散的(。一diSSIPative),若Ra刊犷(I一又A)二X,对几>0.若S(t)是口型的,则A一田I是耗散的. 半群生成的基本定理(几仄城浏犯因伪eon级n onthe罗nerationof~一groups):设A一田了是耗散算子,且对充分小的又>0,Ra翔多(I一又A)包含D(A),则存在石了又下上。型半群S,(0,使得 “·‘!,一厄「了一、小,这里x‘万石刃,,且在任何有限t区间上一致收敛.(若用较弱的条件 忽“一’‘(Ra刊罗(I一“A),二)二。(其中d是集合间的距离)来代替Ran罗(I一几A),S,(t)的存在性也能被证明). 对任何算子A,存在相应的Cauchy问题(Cauc场problon) 会(:)。,u(声),:>o,u(o)一x.(·)若问题(*)有强解(s加飞50】丽on),即有在10,的)上连续,在(0,田)的任何紧子集上绝对连续,对几乎所有t>O取值于D(A)且有强导数的函数。(t),它满足关系(*),则u(t)=S,(t)x.任何函数S,(t)x是问题(*)的唯一的积分解(integlal solu-tion) 在基本定理的假设下,若X是自反空间(代批xi灾sPac。),A是闭算子(ck粥ed operator),则函数u(t)=S,(t)x,对于x‘D(A),产生Cauchy问题(*)的强解,且几乎处处有(d“/dt)(£)C通““(r),其中A”z是A:中有极小范数的元素的集合.这时半群S,(‘)的生成算子A。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条