说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 体波量规函数
1)  Body wave revised value
体波量规函数
2)  Calibration function
量规函数
1.
According to the reference 1, we got the new regional calibration function RLE (△),which applies to the easterm China, and RLW(△), which applies to the western China.
在文献[1]得到的新区域性量规函数RLE(△)(适用于我国东部地区)和RLW(△)(适用于我国西部地区)的基础上,利用新的地震观测资料,通过震级残差统计方法,检验其合理性。
3)  vector wave functions
矢量波函数
1.
Based on formula of vector wave functions in spherical and cylindrical coordinates and their transformation relations,a new method to solve beam coefficients of a two dimensions (2-D) on-axis Gaussian beam is provided.
基于矢量波函数在球和柱坐标系中表达式之间的转换关系,提出了一种求解球坐标系中二维高斯波束波形因子的方法,得到了二维高斯波束波形因子在球坐标系中的解析公式。
2.
n this paper, it is shown that the orthocomplete expansion of δ-function in the set of vector wave functions can be derived by using the orthocomplete expansion of δ-function in the set of scalar wave functions.
利用δ-函数按标量波函数系的正交完备展开式直接推导出δ-函数按矢量波函数系的正交完备展开式。
4)  isospin wave function
旋量波函数
5)  quantum wave function
量子波函数
1.
The quantum wave function of mesoscopic RLC circuit with power source is obtained by the method of representational transformation, and with the wave function, the quantum fluctuation of the mesoscopic circuit was obtained.
用表象变换的方法求得了介观RLC电路的量子波函数,并由此求得了电荷和电流的量子涨落,同时又用双波函数方法研究了有源介观电路的量子效应。
2.
A new method to solve N dimensional ground state quantum wave functions is developed based on quadratures along a single trajectory.
介绍了一个沿着一条确定的轨迹积分求解N维基态量子波函数的新方法 。
6)  Vector wave function
矢量波函数
1.
The new method of the M and N vector wave functions being used to the eigenfunction expansion of the electromagnetic wavefield dyadic Green s function in chiral media is given, and then this method is used to derive the dyadic Green s function of the non-divergence vector potential for the circular chirowaveguide.
首先给出了M和N类矢量波函数用于旋波媒质中电磁波场并矢格林函数的本征函数展开的新方法 ,然后再将这种方法用于导出手征圆波导中无散矢势并矢格林函
补充资料:波函数
      量子力学中描写微观系统状态的函数。在经典力学中,用质点的位置和动量(或速度)来描写宏观质点的状态,这是质点状态的经典描述方式,它突出了质点的粒子性。由于微观粒子具有波粒二象性,粒子的位置和动量不能同时有确定值(见测不准关系),因而质点状态的经典描述方式不适用于对微观粒子状态的描述。
  
  波函数ψ(r,t)是坐标和时间t的复函数。ψ(r,t)的绝对值二次方乘上r 处的体积元dτ与粒子在这个体积元中出现的几率p(r,t)成比例
  p(r,t)=с|ψ(r),t)|2dτ,с是比例常数。
  
  一个微观系统的波函数,满足薛定谔方程。处于具体条件下的微观系统的波函数,可由相应的薛定谔方程解出。例如描写具有确定动量p和能量E的自由粒子状态的波函数是
  由|Ф(r,t)|2=|A|2=常量说明自由粒子在空间各点出现的几率相同。
  
  把波函数的绝对值二次方解释为与粒子在单位体积内出现的几率成比例是M.玻恩在E.薛定谔建立波动力学后提出的,被称为是波函数的统计诠释。波函数所表示的波也常被称为几率波。
  
  由于粒子肯定存在于空间中,因此,将波函数对整个空间积分,就得出粒子在空间各点出现几率之和,结果应等于1:
  可以用代替ψ(rr,t)作为波函数, 那么波函数就满足条件,
  这个条件称为波函数的归一化条件,满足这个条件的波函数ψ┡(r,t)称为归一化波函数。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条