说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 二次样条插值函数
1)  two times spline interpolation
二次样条插值函数
1.
The article is firstly to analyze the qualification of the two times spline interpolation and explain that it can t identify the two times spline interpolation function uniquely, and secondly to give the solution of the two times spline interpolation function with some changed qualifications.
分析二次样条插值的条件,说明给出的条件不能唯一确定二次样条插值函数;然后在变更条件的情况下构造性地给出了二次样条插值函数的求解方法;最后在附加条件S(x_n)=m_n=y_n下给出了二次样条插值函数的求解方法。
2)  cubic spline interpolation cardinal function
三次样条插值基函数
1.
The fourth-order cardinal B-splines N_4(x) was obtained by convoluting the first order cardinal B-splines N_1(x), and cubic spline interpolation cardinal function obtained by using linear combination of N_4(x).
首先对一阶B样条函数N1(x)进行卷积得到四阶B样条函数N4(x),用N4(x)的线性组合构造出三次样条插值基函数;然后用样条插值基序列逼近δ函数,利用δ函数的性质构造插值样条δ序列,该δ序列具有对称、Riesz基和插值性质。
3)  cubic interpolation spline function
三次插值样条函数
1.
With Grey Theory and the cubic interpolation spline function,we established an equal time-span GM(1,1) model to predict the settlement of soft clay foundation,and MATLAB language is applied to compile the program.
运用灰色理论结合三次插值样条函数建立等时距GM(1,1)模型,对软土地基的沉降进行预测,用MATLAB语言编制了相应的计算程序。
4)  quadratic spline interpolation
二次样条插值法
1.
To diminish error,real S type curve is applied by quadratic spline interpolation in this paper.
利用Delphi嵌入式汇编的扩展功能实现基于I/O的热敏电阻温度传感器数据采集 ,并用二次样条插值法研究电压和温度特性非线性化的S曲线 ,减少非线性误差。
5)  spline interpolation function
样条插值函数
1.
Based on the analysis of the extracted linear feature from remote images,this paper studies the vectorizating representation of the linear feature by spline interpolation function.
在分析遥感影像中提取的线状目标的基础上,利用样条插值函数,对提取的线状目标矢量化表示进行了研究。
6)  interpolating B-spline function
B-样条插值函数
1.
By using of interpolating B-spline function,the numerical solution of initial value problem of a kind of an ordinary differential equition set is discussed.
引用三次B-样条插值函数推导了一类一阶常微分方程组初值问题的数值解,给出了一个近似求解公式,并且得到了此公式的局部截断误差为O(h5)。
补充资料:三次样条插值法
分子式:
CAS号:

性质:样条函数中最重要的一种函数。若函数S(x)在区间[a,b]的每一分段[xi-1,xi](i=s,2,…n)上是三次多项式,而整条曲线及其斜率是连续的,便称它是定义在区间[a,b]上的三次样条函数(cubic spline function)。利用拟合的多项式计算函数值,将计算的函数值插入到原有的实验点之间,然后再根据所有实验点拟合成曲线。用三次样条插值法获得的曲线具有很高的精度。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条