1) total least squares problem
多重整体最小二乘问题
3) least square problem
最小二乘问题
1.
This approach can guarantee that the identified parameters are optimal,by solving a one-dimensional polynomial equation instead of a nonlinear least square problem.
这种方法能够保证辨识出的参数是最佳的;而且不用求解对应的非线性最小二乘问题,只需求一元多项式的根,从而大大减少计算量。
2.
This survey is concerned with some recent results on convergence of the Newton method for solving nonlinear operator (equation) and the Gauss-Newton method for solving the least square problems and the convex composite optimization problems.
文章就求解方程最为重要的Newton法以及解非线性最小二乘问题和解非光滑复合凸优化问题的Gauss-Newton法的收敛性等问题的研究成果和进展作介绍。
3.
For solving large-scale sparse least square problems,the author discusses the convergence of two-block AOR iterative method;and gives the necessary and sufficient conditions and the domain of its convergence;and further demonstrates that the spectral radius p (L(2)γ,ω) of two-block AOR optimal iterative matrix.
讨论用2-块AOR迭代法解大型稀疏最小二乘问题的收敛性,给出其收敛的充要条件及其收敛域。
4) least squares problem
最小二乘问题
1.
In this paper,we study the convergence of USSOR iterative methods for solving least squares problems.
将文 [1 ]中求解最小二乘问题的 SOR迭代法推广到 USSOR迭代法 ,给出了 6种分裂形式下 ,USSOR迭代法的收敛域 。
2.
This paper deals with the problem of finding a solution of a constrained least squares problem from the solution set of its unconstrained problem.
本文主要研究线性矩阵方程CZC~T=T的最小二乘解与其若干线性约束最小二乘问题(包括AXA~T+BYB~T=T及其对称与反对称约束问题)解的关系。
5) least squares problem (Procrustes problem)
最小二乘问题(Procrustes问题)
6) total least squares
整体最小二乘
1.
The applicability and limitation of TLS in surveying data process are proposed based on comparisons and analyses between the ordinary least squares and the total least squares.
在参数求解中,针对参数估计模型的观测向量和系数矩阵都可能存在误差情况,20世纪80年代提出了整体最小二乘方法。
2.
In order to solve the problem of together considering any errors in variables,algorithm based on total least squares is presented.
主要讨论了最常用的一元线性回归问题,分析了同时顾及自变量和因变量误差回归解算的相关问题,对采用同时考虑自变量和因变量误差的条件平差解算法,通过分析得出其解算出回归参数的估值与不考虑自变量误差情况下回归参数的估值一致,同时给出了同时考虑自变量和因变量误差的整体最小二乘解法,通过算例分析得出了整体最小二乘法解算的有效性。
3.
This paper analyzes the statistical characteristics of camera imaging error based on studying total least squares,and clarifies the error effect on estimating fundamental matrix.
在研究整体最小二乘法的基础上,分析摄像机成像误差的统计特征,明确误差对基础矩阵估计算法的影响。
补充资料:非线性最小二乘拟合
分子式:
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条