1) Fuzzy Seminormal Subsemigroup
模糊半正规子半群
2) fuzzy normal sub-semigroup
模糊正规子半群
1.
On inverse semi-groups,the fuzzy normal sub-semigroup and fuzzy quotient sub-semigroup are defined via some special fuzzy relation by using fuzzy congruence relation on set.
利用集合上模糊同余关系,在逆半群上定义了模糊正规子半群和模糊商子半群,并研究了逆半群上由这几类模糊关系所定义的模糊同余关系的一些性质。
3) normal fuzzy power monoid
正规模糊幂幺半群
1.
In this paper,fuzzy sets theory is used to power semigroups,and the concepts of fuzzy power semigroups(resp monoids) and normal fuzzy power monoids are introduced and some related properties and structures are considered systematically.
将模糊集理论运用到幂半群,给出了模糊幂半群(幺半群)和正规模糊幂幺半群的定义,进一步研究了其性质和结构。
4) Fuzzy Subsemigroup
模糊子半群
1.
F(S) and F,(S) denote the sets of all fuzzy subsets and all fuzzy subsemigroups of 5, respectively.
设S,T是半群,F(S)和F_s(S)分别表示S的所有模糊子集的集合和所有模糊子半群的集合。
5) normal subsemigroups
正规子半群
1.
In this paper, turning nlrmal subgroups to normal subsemigroups, we will give the similas concepts and discuss their relations in detial.
本文从正规子半群出发,建立了与商群、同余关系等相对应的各种概念,得到了类似的结果。
6) normal subsemigroup
正规子半群
1.
With the proper congruence of Brandt semigroups B=B(G,I),the paper researches on the normal subsemigroups and endomorphisms of B(G,I),and describes all normal subsemigroups and endomorphisms of Brandt semigroups B(G,I).
该文从Brandt半群B=B(G,I)的真同余出发,研究了B(G,I)的正规子半群与自同态,进而刻划出Brandt半群上所有的正规子半群与所有的自同态。
2.
The quasicongruence relation < is defined by the normal subsemigroup M of a group G.
利用群 G的正规子半群 M在 G上定义了一个拟同余关系 <,然后讨论了拟同余关系的扩张和收缩 ,得到了 M的延拓概念及相关性质 。
3.
To introduce the definition of normal subsemigroup of a Clifford semigroup and then constructs the congruent subsemigroup over a Clifford semigrouup.
在Clifford半群的nil-扩张中引入了正规子半群的概念,利用正规子半群给出了Clifford半群的nil-扩张上的同余子半群的概念。
补充资料:半彪子
〈方〉不通事理,行事鲁莽的人。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条