1) Gevrey microregularity
Gevrey微局部正则性
1.
In this paper, we first go over some aspects of paradifferential calculus in Gevrey classes, then study some propositions of symbols related to fully nonlinear partial differential equations in Gevrey classes, and as an application, get Gevrey microregularity of solutions at elliptic points.
作为应用 ,我们得到解在椭圆点附近的Gevrey微局部正则性 。
2) Gevrey class regularity
Gevrey类正则性
1.
In this paper, the Gevrey class regularity and analyticity with respect to time for the solution of iD generalized Ginzburg--Landau are obtained.
本文得到了一维广义Ginzburs-Landau方程解的Gevrey类正则性和关于时间的解析性。
3) local regularity
局部正则性
1.
The local regularity result for solutions of obstacle problems of nonlinear A_harmonic equationdivA(x,u(x))=divF(x)is obtained.
障碍问题解的局部正则性结果,即设障碍函数ψ∈W1,sloc(Ω),1
2.
The local regularity result is obtained by using the method of Hodge decomposition.
使用Hodge分解等工具,得到了其局部正则性,推广了[1]之结果。
4) local regularity estimates
局部正则性估计
1.
By the way of Morawetz multiplier,the local regularity estimates for the Schrdinger equation with potentials are developed which genaralize the addition condition.
为将附加条件推广到更一般的情况,考虑了带有势函数的Schrdinger方程的初值问题,利用Morawetz乘子,得到了带有势函数的Schrdinger方程解的局部正则性估计。
5) C1
局部C1μ-正则性
6) weak local holomorphy
弱局部正则性
补充资料:于则
1.人名。传说为始制鞋者。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条