1) principal ideal integral domain
PID环
1.
Some characteristics of matrix semigroups Mn(R) and resolution of its invertible matrix over principal ideal integral domain;
PID环上矩阵半群M_n(R)的一些特性及其可逆阵的分解
3) closed-loop PID-type
闭环PID型
1.
In this paper,a closed-loop PID-type iterative learning scheme for a class of linear time-varying system is analyzed.
对闭环PID型迭代学习算法进行了收敛分析,并针对一类线性时变系统,分别运用开环和闭环PID型迭代学习算法进行了仿真研究。
4) dual-loop PID
双环PID
1.
Analysis and position control of the planar switched reluctance motor(PSRM) based on dual-loop PID were performed.
在分析电机特性的基础上,提出了一种双环PID控制方案。
5) PID closed-loop control
PID闭环控制
1.
The process of the heating and warm-keeping of the vacuum furnace is controlled by the PID closed-loop control,which heating process could make the temperature of the heating process increase to the temperature settled much faster and more accurate.
对真空炉的加热和保温过程采用了PID闭环控制,使加热过程的温度能够更快速、更精确的达到设定温度。
6) open-closed loop PID-type
开闭环PID型
1.
Robustness of open-closed loop PID-type iterative learning control algorithm for nonlinear systems;
非线性系统开闭环PID型迭代学习控制算法的鲁棒性
2.
In this paper,an open-closed loop PID-type iterative learning control scheme for a class of nonlinear time-varying system with unknown parameters is proposed.
针对一类参数未知非线性的迭代学习控制问题提出了一种开闭环PID型迭代学习控制律,这种迭代学习律同时利用了系统当前的跟踪误差和前次迭代控制的跟踪误差修正控制作用,给出了迭代学习控制算法收敛的充分性条件。
补充资料:discrete PID control algorithm
分子式:
CAS号:
性质:在用计算机等作为控制装置进行数字控制时实现PID控制作用的数学表示式。在数字控制中,控制装置只取各个采样时刻的输入变量值进行运算,如偏差值e(k)为第k个采样时刻的设定值r(k)与被控变量测量值y(k)的差值。离散PID控制有位置算法、增量算法与速度算法三种形式。(1)位置算法直接给出各采样时刻的控制作用量2J(是),具体算法是:式中,Kc为比例增益,Ti为再调时间,Td为预调时间,Δt为采样周期。这里用叠加代替积分,差分代替微分。位置算法的输出可直接送往数字式执行器,或经数字/模拟转换送往模拟式执行器,并须用保持器将该信号保持到下一次采样为止。在手动一自动切换和防止积分饱和问题上,位置算法不像另两类算法那样方便。(2)增量算法给出每个采样时刻控制装置输出应改变的数值Δu(k),即第k个采样时刻的控制作用量u(k)与前一采样时刻的控制作用量u(k-1)之间的差值,具体算法是: 增量算法的输出一般通过步进电机等累积机构,化为模拟量,操纵控制阀。该种算法具有手动一自动切换方便,和避免引起积分饱和等优点,应用最广。(3)速度算法给出在各个采样时刻控制装置输出应采取的变化速v(k),该速度用Δu(k)/Δt近似表示,具体算式为:速度算法的输出应送往积分式执行机构。速度算法也有手动一自动切换方便和避免引起积分饱和的优点。
CAS号:
性质:在用计算机等作为控制装置进行数字控制时实现PID控制作用的数学表示式。在数字控制中,控制装置只取各个采样时刻的输入变量值进行运算,如偏差值e(k)为第k个采样时刻的设定值r(k)与被控变量测量值y(k)的差值。离散PID控制有位置算法、增量算法与速度算法三种形式。(1)位置算法直接给出各采样时刻的控制作用量2J(是),具体算法是:式中,Kc为比例增益,Ti为再调时间,Td为预调时间,Δt为采样周期。这里用叠加代替积分,差分代替微分。位置算法的输出可直接送往数字式执行器,或经数字/模拟转换送往模拟式执行器,并须用保持器将该信号保持到下一次采样为止。在手动一自动切换和防止积分饱和问题上,位置算法不像另两类算法那样方便。(2)增量算法给出每个采样时刻控制装置输出应改变的数值Δu(k),即第k个采样时刻的控制作用量u(k)与前一采样时刻的控制作用量u(k-1)之间的差值,具体算法是: 增量算法的输出一般通过步进电机等累积机构,化为模拟量,操纵控制阀。该种算法具有手动一自动切换方便,和避免引起积分饱和等优点,应用最广。(3)速度算法给出在各个采样时刻控制装置输出应采取的变化速v(k),该速度用Δu(k)/Δt近似表示,具体算式为:速度算法的输出应送往积分式执行机构。速度算法也有手动一自动切换方便和避免引起积分饱和的优点。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条