说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分次Bass环
1)  graded Bass ring
分次Bass环
2)  Bass ring
Bass环
1.
WT5BZ]Introduces and characterizes graded Bass rings,discusses the relations among graded rings R and the rings which are derived by it,R,R e,R#G and obtains R,R e,R#G and graded ring R are identical on the properties about Bass rings on the conditions of finite group G type strongly graded rings|G| is inverse of R,e is the identity of G ).
引进并刻划了分次 Bass环 ,讨论了分次环 R及由它导出的非分次环 R,Re,R# G之间的 Bass环性质的关系 ,得到在有限群 G-型强分次环 ( |G|是 R的逆元 ,e是 G的单位元 )的条件下 ,R,Re,R# G与分次环 R在 Bass环性质上是一致
3)  graded PS-ring
分次PS-环
1.
We prove that S is a graded right V-ring if and only if R is a graded right V-ring,S is graded PS-ring if and only if R is a graded PS-ring,and S is a Von Neumann regular ring if and only if R is a graded Von Neumann regular ring.
本文引进了分次环的分次Excellent扩张概念,设S=⊕_(g∈G)S_g是R=⊕_(g∈G)R_g的分次Excellent扩张,证明了S是分次右V-环当且仅当R是分次右V-环,S是分次PS-环当且仅当R是分次PS-环,S是分次Von Neumann正则环当且仅当R是分次Von Neumann正则环。
4)  graded ring
分次环
1.
It introduces a new conception—augmented(G,H)-graded rings,give two characterizatons for augmented(G,H)-graded rings in special cases.
将扩大G-分次环的概念加以推广,定义了一种新的分次环——扩大(G,H)-分次环,给出其两个等价刻划,并在R(G,H)-A g r中引入N oetherian模的概念,讨论了R(G,H)-A g r与(Re,H)-g r范畴间N oetherian模的一些性质与关系。
2.
The BrownMcCoy radicals of the graded rings are studied.
研究了分次环的Brown-McCoy根,用新的方法证明并推广了文献[1]中的主要结果,证明在比自由群更广泛的群类上分次环的Brown-McCoy根是分次的。
3.
In this note ,we characterize the graded Bear radical,graded koethe radical,graded Levitizki radical and graded Brown-McCoy radical in the category of associative monoid-graded rings (not necessarily with 1) and grade-preserving ring homomorphisms,with element properties.
在一般Monoid—分次环 (未必有 1)范畴中 ,给出了分次Bear根 ,分次Koethe根 ,分次Levitizki根和分次Brown -McCoy -根的元素特性 ,并分别给出了对应于这几个根的分次半单环的结构定理 ,指出了分次环A = x∈MAx 的分次根和结合环Ae 的根之间的密切关系。
5)  H-graded ring
H-分次环
1.
Let R be a G-graded ring with local units,if we view H-graded rings R#G/H as-setH/K-graded rings,then we will get the category(H/K,R#G/H)-gr is isomorphic to the category(G/K,R)-gr.
若R是具有局部单位元的G-分次环则可将H-分次环自然地看成H-集H/K-分次环,得到H/K-分次-模范畴(H/K,)-gr与G/K-分次R-模范畴(G/K,R)-gr同构。
6)  M-graded ring
M-分次环
补充资料:dunn bass
分子式:
CAS号:

性质: 又称夹层,指夹于矿体(层)内部和处于紧邻矿体(层)之间的非矿岩石(包括低于边界品位的含矿岩石),其形状呈透镜状、层状或不规则状。在矿床的储量计算中夹石的剔除受一工业指称的限制。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条