1) ultra-cold V-type three-level atom

超冷V型三能级原子
1.
The effects of the atomic coherence on the photon statistics of the micromaser injected with ultra-cold V-type three-level atoms are studied.
建立了超冷V型三能级原子注入的微波激射的腔场光子统计的量子理论 ,研究了原子相干性对光子统计性质的影响 。
2) V-type three-level atom

V型三能级原子
1.
Atomic dipole squeezing in the system of the two-mode entangled coherent states interacting with a V-type three-level atom in Kerr medium;
Kerr介质中双模纠缠相干光场与V型三能级原子相互作用系统的原子偶极压缩
2.
Evolution properties of Mandel factor in the system of the V-type three-level atom interacting with a squeezedcoherent light field in a Kerr medium;
Kerr介质中V型三能级原子与压缩相干态光场相互作用系统Mandel因子的演化特性
3.
Influence of the interaction between atoms on the squeezing properties of V-type three-level atomic lasers;
原子间相互作用对V型三能级原子激光压缩性质的影响
3) V type three level atom

V型三能级原子
1.
Based on the modified effective Hamiltonian for the system which the degenerate V type three level atom interacts with coherent state cavity field under far off resonant condition, the wave function of the system is derived by means of matrix forms.
根据简并V型三能级原子与光场的远离共振相互作用系统的改进型有效哈密顿量 ,通过矩阵方法 ,推导出系统随时间演化的波函数 ,提出一种未知原子态的隐形传态方案。
2.
The squeezing properties of two mode squeezed field interacting with Bose Einstein condensate of V type three level atoms are studied.
研究了V型三能级原子的玻色 爱因斯坦凝聚体与双模压缩相干态光场相互作用系统中光场的压缩特性 。
3.
In this paper,by using the theory of multi mode squeezed states estblished recently by Yang Zhiyong and Hou Xun in references 10~13,we had studied in detail 1 th power and 2 th power equal order Y squeezing effects of the field in the system of two mode noncorrelated coherent state light field interacted with the V type three level atom in the higher Q Kerr medium cavity.
本文利用多模压缩态理论 ,详细研究了高 Q Kerr介质腔中非关联双模相干态光场与 V型三能级原子相互作用系统中双模光场的一次和二次等阶 Y压缩效应 ,结果表明 :1 )等阶 Y压缩特性强烈地依赖于 Kerr介质的三阶非线性极化系数 (x)和双模光场中各模的平均光子数 n- 1、n- 2 ;当 x<1 ,n- 1=n- 2 <1时 ,不产生等阶 Y压缩效应 ;而当 x=2 。
4) V-type three level atom

V-型三能级原子
1.
The evolution properties of the entropy of squeezed field interacting with the V-type three level atom via intensity-dependent coupling have been studied.
研究了压缩态光场与V-型三能级原子依赖强度耦合系统场熵的演化特性,讨论了初始光场压缩因子和双光子跃迁失谐量对场熵演化的影响。
5) ultracold three-level atoms

超冷三能级原子
6) a moving V-type three-level atom

运动V型三能级原子
1.
By means of solving Schrdinger equation and numerical calculations,photon bunching and antibunching effect in the system of the two-mode entangled coherent states interacting with a moving V-type three-level atom is investigated.
采用求解Schrdinger方程和数值计算方法,研究了双模纠缠相干光场与运动V型三能级原子相互作用过程中的聚束和反聚束效应。
补充资料:冷中子和超冷中子
用温度作低能区中子能量范围划分的一种习惯说法。在媒质中,中子通过同原子核等粒子的碰撞,达到热平衡时,其能谱服从温度接近于媒质温度的麦克斯韦分布。因此,中子的能量也可以用温度来表示。如,室温(293.6K)热中子的最可几能量为0.0253eV。一般把能量低于 5×10-3eV的中子叫做"冷中子"。在冷中子中,能量在10-4eV(约1K)~10-7eV(约10-3K)的中子叫做甚冷中子,能量小于10-7eV 的中子叫做超冷中子。中子谱低能端能量分布可以用麦克斯韦分布近似,能量E<的中子份额只占千分之几(k为玻耳兹曼常数,T为绝对温度)。在一般的裂变反应堆中,冷中子占的份额不超过2%。
早在1947年,E.费密等就利用氧化铍晶体过滤反应堆中子的方法来获得冷中子。60年代以后,随着高通量反应堆的建立及有关技术的进步,甚冷中子和超冷中子的研究及其可能的应用受到了较大的注意。
冷中子能量低,其波动特性比热中子更明显。 5×10-3eV的中子德布罗意波波长约为0.4nm,10-4eV的中子波长约为2.9nm,10-7eV的中子波长约为90.4nm。冷中子的衍射特性用于线度同其波长相近的微观和亚微观结构研究上。例如冷中子小角散射可研究晶体缺陷和磁畴结构。除了凝聚态物理外,在化学和生物学上冷中子也是有用的工具。
目前冷中子装置大多建立在反应堆上。常常用一个放在反应堆活性区或反射层的"冷源"(充满液氢的容器)来获得较多的冷中子,然后用导管把它们从反应堆内引到较远的地方进行实验。冷中子波在一些媒质分界面上掠入射时具有全反射的特性,其临界角同中子能量及媒质成分有关。因此可以用一种弯曲度不太大的管子(称为中子导管)把它们传输到几十米远处而很少损失。冷中子的探测方法与热中子大体相同。
超冷中子在某些媒质分界面上,即使垂直入射也具有全反射特性(即临界角达到 90°),因此可以被贮存在特制的容器中(称为中子瓶)。中子瓶的实验装置已被初步研制成功,但贮存时间还小于预期值,其原因可能主要是容器内表面微量杂质的影响。超冷中子的速度小于4m/s,可以利用重力场和机械装置改变其能量。超冷中子还可以用磁场进行聚焦、加速或减速,因而也可被贮存在磁场中(磁中子贮存环),其优点是不受器壁的影响。
利用超冷中子及其贮存特性,有可能进行某些独特的精密实验。例如测定中子半衰期、测定中子电偶极矩以及检验电荷-宇称-时间 (CPT)守恒律的破坏问题等。
参考书目
L. Koester and A. Steyerl, Neutron Physics,Springer-Verlag, Heidelberg, 1977.
早在1947年,E.费密等就利用氧化铍晶体过滤反应堆中子的方法来获得冷中子。60年代以后,随着高通量反应堆的建立及有关技术的进步,甚冷中子和超冷中子的研究及其可能的应用受到了较大的注意。
冷中子能量低,其波动特性比热中子更明显。 5×10-3eV的中子德布罗意波波长约为0.4nm,10-4eV的中子波长约为2.9nm,10-7eV的中子波长约为90.4nm。冷中子的衍射特性用于线度同其波长相近的微观和亚微观结构研究上。例如冷中子小角散射可研究晶体缺陷和磁畴结构。除了凝聚态物理外,在化学和生物学上冷中子也是有用的工具。
目前冷中子装置大多建立在反应堆上。常常用一个放在反应堆活性区或反射层的"冷源"(充满液氢的容器)来获得较多的冷中子,然后用导管把它们从反应堆内引到较远的地方进行实验。冷中子波在一些媒质分界面上掠入射时具有全反射的特性,其临界角同中子能量及媒质成分有关。因此可以用一种弯曲度不太大的管子(称为中子导管)把它们传输到几十米远处而很少损失。冷中子的探测方法与热中子大体相同。
超冷中子在某些媒质分界面上,即使垂直入射也具有全反射特性(即临界角达到 90°),因此可以被贮存在特制的容器中(称为中子瓶)。中子瓶的实验装置已被初步研制成功,但贮存时间还小于预期值,其原因可能主要是容器内表面微量杂质的影响。超冷中子的速度小于4m/s,可以利用重力场和机械装置改变其能量。超冷中子还可以用磁场进行聚焦、加速或减速,因而也可被贮存在磁场中(磁中子贮存环),其优点是不受器壁的影响。
利用超冷中子及其贮存特性,有可能进行某些独特的精密实验。例如测定中子半衰期、测定中子电偶极矩以及检验电荷-宇称-时间 (CPT)守恒律的破坏问题等。
参考书目
L. Koester and A. Steyerl, Neutron Physics,Springer-Verlag, Heidelberg, 1977.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条