1) The universal coen veloping coalgebras

余包络余代数
2) comodule coalgebra

余模余代数
1.
This paper introduces the conception of two-sided Hopf comodule coalgebras and mainly gives the Maschke theorem for two-sided H-comodule coalgebra.
引入了双边Hopf余模余代数概念,并证明了双边Hopf余模余代数的Maschke定理。
3) rectified cosine envelope

升余弦包络
1.
The simulation results show that the relatively ideal pulses are modulated pulses with Gaussian envelope and rectified cosine envelope.
结果表明,性能比较理想的是高斯型包络的调制脉冲和升余弦包络的调制脉冲。
4) coalgebra
[kəu'ældʒibrə]

余代数
1.
Generalized Coassociative Law for Coalgebras and Comodules;

余代数和余模的广义余结合律
2.
Quasi-conoetherian Coalgebras;

拟余Noether余代数(英文)
5) module coalgebra

模余代数
1.
Let L and A be Hopf algebras on field k with antipodes SL and SA,and let C be a right A-module coalgebra.
设L是域k上的Hopf代数,其对极为SL;A是Hopf代数,其对极为SA,令C是右A-模余代数,给出改进后的LLYD中(C,A)-Hopf模的基本结构定理,是一般Hopf模基本结构定理的推广。
2.
For k a commutative ring,A a k-bialgebra and D a right A-comodule k-algebra,we define a new comultiplication on the A-comodule D to obtain a “twisted coalgebra”D~τ,and give the sufficient and necessary conditions for D~τbeing a A-module coalgebra.
设k是交换环,A是k上的双代数,D是右A-模余代数,B是右A-余模代数。
3.
Let L and A be Hopf algebras on field k with antipodes s_L and s_A, B being a right A-comodule algebra, C a right A-module coalgebra.
设L是域k上的Hopf代数,其对极为sL;A是-Hopf代数,其对极为sA,B是右A余模代数,C是右A模余代数,给出LLYD中(A,B)Hopf模的定义以及LLYD中(A,B)-Hopf模的基本结构定理,并讨论了其对偶情况。
6) comodule algebras

余模代数
1.
The convolution properties of right H-comodule algebras are studied in this paper with detailed discussions made on the sufficient and essential condition for r to be a twisting of Hopf algebras (H ,), and the effect of twisting on the structures of left H-module algebras and right H-comodule algebras A.
主要研究了右H-余模代数上的扭的卷积性质,对τ能够作成Hopf代数的扭的充分必要条件,以及扭作用对左H-模代数和右H-余模代数A的结构产生的影响进行了深入探讨。
补充资料:尿后余沥
尿后余沥
排尿后仍有尿液点滴不尽的表现。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条