说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 模糊同余扩张
1)  fuzzy congruence extension
模糊同余扩张
1.
We introduce the concept of fuzzy congruence extensions for subsemigroups of a semigroup S, and give some homomorphic properties of fuzzy congruences extensions.
本文引入半群的模糊同余扩张的概念,给出了模糊同余扩张的同态性质。
2)  The Fuzzy Congruence Extension for Fuzzy Subsemigroups
模糊半群上的模糊同余扩张
3)  congruence extension
同余扩张
1.
The smallest congruence extensions of ideals in Fuzzy lattices;
Fuzzy格中理想的最小同余扩张
2.
In this paper, we discuss the subdirect reducibility of a class inverse semigroups by virtue of congruence extensions on inverse semigroups, and characterize the idempotent semilattices of this class inverse semigroups.
本文利用逆半群上的同余扩张,讨论了一类逆半群的亚直可约性,并刻划了这类逆半群的幂等元集的特征。
3.
It is very importent to study congruences and congruence extensions on semigroups.
本文讨论了带上的同余的正规性和不变性以及在其Hall半群上的扩张,从同余扩张的角度刻划了带上的同余的性质,给出了扩张的极大、极小同余的描述。
4)  fuzzy congruence
模糊同余
1.
It is first introduced that the concept of fuzzy congruence triple of a fuzzy congruence on a regular semigroup, and then showed that each fuzzy congruence on a regular semigroup is uniquely determined by its fuzzy congruence triple.
考虑一般的正则半群上的模糊同余,定义了正则半群的模糊同余三元组的概念,证明了正则半群上的每个模糊同余由它的模糊同余三元组惟一确定,进而得到正则半群上的模糊同余集和模糊同余三元组集之间存在一一对应关系。
2.
show that every fuzzy congruence on a regular semigroup saturates its fuzzy kernel, and obtain the necessity and sufficiency conditions that a fuzzy subset of a regular semigroup is the fuzzy kernel of some fuzzy congruence.
模糊核迹方法是研究正则半群上模糊同余的重要手段 ,模糊核作为一个方法的组成部分成为重要的讨论对象。
3.
We introduce the concept of fuzzy congruence extensions for subsemigroups of a semigroup S, and give some homomorphic properties of fuzzy congruences extensions.
本文引入半群的模糊同余扩张的概念,给出了模糊同余扩张的同态性质。
5)  fuzzy column extension
模糊列扩张
6)  fuzzy congruence pairs
模糊同余对
1.
In this paper we study the fuzzy kernel-trace of the fuzzy congruence relation on some class semigroup,that is,the notions of fuzzy kernel and fuzzy trace of a fuzzy congruence relation on a completely regular semigroup;we establish these notions by introducing fuzzy congruence pairs.
并给出这类半群上模糊同余对的概念,构造出完全正则半群上模糊同余与模糊同余对之间的一一对应关系。
补充资料:极大扩张和极小扩张


极大扩张和极小扩张
maximal and minimal extensions

  极大扩张和极小扩张匡.习的司出目.公油抽lex妇心.旧;MaKcl.Ma刀‘.oe H Mll.”M田.妇oe PaC山一Pe皿朋] 一个对称算子(s笋nr贺苗c opemtor)A的极大扩张和极小扩张分别是算子牙(A的闭包,(见闭算子(cfo“月。详mtor”)和A’(A的伴随,见伴随算子(呐。int opera.tor)).A的所有闭对称扩张都出现在它们之间.极大扩张和极小扩张相等等价于A的自伴性(见自伴算子(义休.adjoint operator)),并且是自伴扩张唯一性的必要和充分条件.A.H.J’Ior朋oB,B.c.lll户、MaR撰
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条