1) Infinite multiple integral
无穷限多重积分
2) infinite integral
无穷限积分
1.
Solution of one type of infinite integral by Laplace transform;
用Laplace变换求一类无穷限积分
2.
then infers other a series of results of infinite integral of monotone function by this conclusion.
然后,利用这一结论,相继推得单调函数无穷限积分的其他一系列结果。
3.
In this paper, we obtain the control convergence theorem of infinite integral and extendthe result on the basis of Arzela control convergence theorem of Riemann integral in a finite region.
本文根据有限区间上Riemann积分的Arzela控制收敛定理[1],给出无穷限积分的控制收敛定理,并做了相应的推广。
3) infinite limited integral calculus
无穷限广义积分
1.
Calculating methods and skill of infinite limited integral calculus;
无穷限广义积分的计算方法及技巧
4) abnormal integral in the infinite range of integration
无穷限反常积分
1.
It is proved that the limit of the integrand f(x) of convergent abnormal integral in the infinite range of integration at infinity is zero on certain conditions.
证明了在一定条件下,收敛无穷限反常积分的被积函数f(x)在无穷远处的极限是零,在f(x)或xf(x)单调的条件下,还得到了更好的结果。
5) infinitely dimensional integrals
无穷维积分;无限维积分
6) an infinite number of integrals of motion
无穷多运动积分
1.
It is identified that an infinite number of integrals of motion does exist and one of .
计算了准周期性边界条件下ZMS模型的无穷多运动积分;求出了ZMS模型在不相关边界下的经典可积边界条件与边界K+矩阵,并证实在此条件下确实存在一组无穷多运动积分、且其中的一个正是体系的哈密顿量,因而该系统是完全可积的。
补充资料:多重积分
多重积分
I
多重积分【m日ti沙抽峡,1;即aTB戚IIHTe印盯] 多变量函数的一种定积分.有几种不同的多重积分概念(R允rr以Im积分,此bes胖积分,玩比邵胆一Stie-ltjes积分,等等). 重Rien坦Lnn积分是以玉川白n测度(Jo宜坛n能a-s眠)拜为基础的.设E为n维E孤lid空间R”中的一Jo攻场n可测集,拌。为n维为已汕测度,并设:={E,})一,为E的一个分划,即一组Jorchn可测集E:,满足U卜:E。=E且拼。(E‘自E,)=0(i护j,i,j=1,…,n).令d(E。)表示E‘的直径,量 占:=n以xd(E,) f~.,,k称为分划:的网格(mesh of the paltjtion).若f(x)(x=(x.,‘·‘,x。”为在E上定义的函数,则任何形如 k a一‘·(f;亡‘”,“‘,“‘,)一各f(“‘,)。·(“,), 别‘)‘E“:的和称为函数f的Rjen旧田n积分和(R打nann inte脚1sUIn)·若lim‘,一。叮:存在且不依赖于特殊的分划序列,则此极限称为f在E上的n重Ri日比以nn积分(n~tup】eR七m田min唤归1)并记成 ff(二)d、或f…ff(二,..…二_、d:.…d二_. 若“E.函数f本身称为RIOrr以朋可积的(Rjen正比田illteg-mble)或简称R可积的(R一泊忱脚b」e). 当。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条