1) p-adic

p-adic域
2) p-adic fields

p-adic数域
1.
The necessary and sufficient condition of real-valued function is researched in p-adic fields.
研究了p-adic数域上实值函数可积的充要条件。
2.
The paper is briefly focused on mean value theorem of differentials on P-adic fields.

主要研究P-adic数域上的微分中值定理。
3) p adic number field Q p

p-adic数域Qp
4) p-adic analysis

p-adic分析
1.
Using algebraic number theory and p-adic analysis,we find all integral points on y~2= x~3+27x-62.
使用代数数论和p-adic分析,我们我到了椭圆曲线y~2=x~3+27x-62上所有的整数点。
5) p adic space

p-adic空间
6) p-adic decomposition

p-adic分解
1.
Combining the p-adic decomposition of the variables in Zpr,this paper mainly discusses the correlation immunity of k-dimension pr-valued logic functions.
文章在p-adic分解意义下,讨论了k维pr值向量逻辑函数的相关免疫性。
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条