1) invariant determinant

不变行列式
1.
The invariant determinants ha Banach algebras are discussed and a necessary and sufficient condition for those integral traced unital Barach algebra(A,τ) admitting a G-invari- ant determinant is obtained,where G is a group of trace preserving automorphisms of A.
研究了 Banach 代数中的不变行列式问题。
2) paired permanent determinant

对不变行列式
3) spatial invariance of determinant

行列式空间不变性
1.
Unlike the existed estimators based on subspace techniques,the proposed method gives closed form estimates of both parameters based on spatial invariance of determinant of Toeplitz matrix formed by single snapshot data.
利用均匀线阵单次快摄数据矩阵的行列式空间不变性 ,提出了一种新的局部散射源中心波达方向估计方法 。
4) determinant of transformation

变换行列式
5) determinant inequality

行列式不等式
1.
In the study of the functions of several complex variables,Hua Loo-Keng discovered and proved the following determinant inequality: If A,B are n×n complex matrices and I-AAH and I-BBH are Hermitian positive definite matrices,then det(I-AAH)det(I-BBH)≤|det(I-ABH)|2.
在多复变分析的研究中,华罗庚发现并证明了行列式不等式det(I-AAH)det(I-BBH)≤|det(I-ABH)|2,其中n×n复矩阵A,B满足I-AAH,I-BBH都是Hermitian正定矩阵。
2.
We extend the determinant inequality of generalized real positive definite matrices that is advanced by (paper[3]).
推广了文献[3]中的广义实正定矩阵的行列式不等式,同时给出了广义实正定矩阵的凸性不等式。
3.
By using the implements of the more precise determinant inequality of two Hermitian positive definite matrices, and by the result of the relationship among the determinants described by the quardratic inequality, we obtain a new upper bound of the sum of two complex matrices.
利用得到的相关一元二次不等式描述的行列式之间的关系,给出了两个复矩阵和的行列式新上界,作为应用可改进华罗庚行列式不等式的上界。
6) Hua Loo-keng's determinant inequality

华罗庚行列式不等式
补充资料:N阶行列式
设有n2个数,排成n行n列的表 ,作出表中位于不同行不同列的n个数的乘积,并冠以符号(-1)t,的形式如下的项,其中为自然数1,2,...,n的一个排列,t为这个排列的逆序数.由于这样的排列共有n!个,这n!项的代数和称为n阶行列式
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条