1) Order differential eguations

复合型方程
2) composite Bessel equation

复合型Bessel方程组
1.
With reducing the analysis expression of fixed solution problem on a class of composite Bessel equation,the text gains the solution s formal similarity.
通过对复合型Bessel方程组定解问题的解析表达式进行整理和简化,得到了解式的相似结构形式;说明了该类微分方程组的解具有类似于实数的相似性质;指出了对解式的相似性质的研究,有利于进一步分析解的内在规律,解决相应的应用问题,方便编制相应的分析软件。
3) mixed complex equations

混合型复方程
4) Complexde systems

复合型方程组
5) differential equation of composite type

复合型微分方程
6) composite equations

复合方程
1.
The composite equations for water waves propagating over a porous uneven bottoms are derived from Green s second identity, which incorporates the effects of porous medium in the nearshore region and considers the advances in models of water waves propagation over rigid bottoms.
为了反映近岸区域实际存在的多孔介质海底效应,并且考虑到波浪在刚性海底上传播模型的最新研究进展,运用Green第二恒等式建立了波浪在非平整、多孔介质海底上传播的复合方程,假设水深和多孔介质海底层厚度均由两种分量组成:慢变分量,其水平变化的长度尺度大于表面波的波长;快变分量,其水平变化的长度尺度与表面波的波长等阶,但其振幅小于表面波的振幅,另外,多孔介质层下部边界的快变分量比水深的快变分量小1个量级,针对水体层和多孔介质层,选择Green第二恒等式方法给出了波浪传播和渗透的复合方程,它在交接面上满足压力和垂直渗透速度的连续性条件,可充分考虑波数变化的一般连续性,并包含了某些著名的扩展型缓坡方程。
补充资料:拟线性双曲型方程和方程组
拟线性双曲型方程和方程组
quasi-linear hyperbolic equations and systems
尸二。*(“,卢),g=u,(“,刀)的六个一阶方程,其中之一是由所有其他的导出的,可以考虑这个具有五个未知函数的五个拟线性方程的组.对类似的方程组,因此对拟线性方程,成立Q成勿问题解的存在性和唯一性定理.这个方法,无需作任何重大的改变,可以应用于二阶拟线性组 a。二,+b。女,+eu堆。+韶二0,j=l,‘·,k,其中系数依赖于x,t和诸函数叼【补注】有关应用,见仁A2]一汇A3].拟线性双曲型方程和方程组【q退函七翔口hy碑比叱e闰四d.”.川另喊曰璐;~If皿.e益”砒咖eP加皿,ee翩e郑姗尹H.,“c邢cWM曰] 形如 乙「ul二又a‘D,u二f(l、 】口】‘爪的微分方程和微分方程组,方程组(l)是对具有分量。,(x),…,。*(x)(在单个方程情形下,丸二l)的矢量值函数u(x)来求解的.系数矿是矩阵,它的元依赖于空间自变量x=(x。,二,x。)和矢量值函数u,以及它的直到嫩一1阶在内的偏导数.右端项f亦依赖于这些变量.如果矿是和u的分量个数有相同阶的方阵,那么称(1)是确定方程组(de沈rn应贺d哪t曰m).特征形式(chara叱ristic form) e‘古’一。‘“。,”‘,“·,一det…1.:落。二;·……是由L的丰邵(p血cip司part)艺{二{一‘少所决定的.这里D“=沙!/刁瑞。…日袱·,而扩=鱿,.‘’C“· 方程组(1)的双曲性是由算子L的下列表征所定义的.对于x,u及其直到川一1阶在内的导数的每一组值,存在一个矢量心‘R”+’,使得对任一不平行于心的叮〔R”+’,特征方程(cllaraCteristic叫Uation) Q(又心+粉)二0(2)有mk个实根又(每个根有多少重就算多少次). 通过某点尸‘R”十’且垂直于矢量省的面元称为空向的(印ace】正e),垂直于空向面的方向称作时向的(石力℃」正e), 一曲线,在它每个点上都有时向的切线,称作时向曲线(ljme.】ike~). Ca.dly问题(Ouchy Problem)在拟线性双曲型方程和方程组的所有问题中占有中心位置,它是在下列条件下求方程组(l)的解u的问题:在由方程 职(x)“0,!D,卜}gad甲1尹0所定义的某个光滑的n维超曲面n上,已给函数u以及它的(沿某个不切于n的方向的)直到爪一l阶(在内)的偏导数的值.如果总可以求得这样的解,那么n称作是关于L的自由超曲面(6优b)咪r-surfa此). 如果(1)的系数和给在解析自由超曲面n上的Q叻y条件都是解析的,那么在n的一个邻域中的解析解是唯一的;如果Q公勿条件还包含有n上所有直到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条