说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 渐近展式
1)  asymptotic expansion
渐近展式
1.
Under some Suitable Conditions,we givethe asymptotic expansion of solution of any order, .
0<ε〈〈1,在适当的条件下,作出了任意次精度的渐近展式
2.
The main purpose is to prove thatthe Galerkin solution for the nonlinear singular problem possesses theasymptotic expansion as in the linear singular problem case.
本文讨论一类非对称非线性奇异两点边值问题有限元解的渐近展式,证明了非线性问题的解与一个辅助线性问题的解之间具有超逼近,从而对线性问题所具有的高精度性质对非线性问题同样成立。
2)  asymptotic expansion
渐近展开式
1.
By using the Lindatedt-Poincare method,introducing the transformation of parameter and eliminating the secular terms in the formal solution,the first order uniformly valid asymptotic expansion is obtained.
讨论了一类二阶弱非线性常微分方程,利用Lindstedt-Poincare法,引入参量变换,消去形式解中出现的长期项,得到了解的一阶一致有效的渐近展开式。
2.
In this paper,the author discusses the multi-layer solution with two special limits in boundary layer of the singularly perturly boundary value problem and obtains uniformly valid zero order asymptotic expansion by using the matching asymptotic expanding method.
利用匹配渐近展开法 ,讨论了奇摄动边值问题中边界层内存在有两个特异极限的多层解 ,得出了奇摄动边值问题的一致有效的零次渐近展开
3.
Under a given assumption, the author of this paper obtained the uniformly powerful asymptotic expansion of M order and made an estimation of the remainder in asymptotic series.
研究拟线性双曲型方程柯西问题,在一定假设下,得到解的M阶一致有效的渐近展开式,并作出余项估计。
3)  asymptotic expansions
渐近展开式
1.
In this paperFwe study thesingular perturbation of nonlinear ddifferential equations with two parameters:y = f(x,y, z, ε,μ),y(1,ε,μ) = a(ε,μ)εy" = F(x,y, z, z_1, ε,μ), z (0,ε,μ) = b(ε,μ)z(1,ε,μ) = c(ε,μ)Under some affropriate conditions, using the theory of differential inequalities, we qet the existence of the solution and its asymptotic expansions which is uniformly valid for all orders unti
本文研究一类含有双参数非线性微分方程组的奇摄动,在适当的假设条件下,利用微分不等式理论,证明了摄动解的存在,并给出了解的直到o(sum from k=0 to n+1 ε~(N+1-K)μ~k)阶的一致有效渐近展开式。
2.
My method is to find the new equations and its solutions from the known equations and its solutions,and to find the asymptotic expansions.
给出一类二阶线性方程的求解公式和解的渐近展开式。
4)  asymptotic inequality expansions
渐近不等式展开
5)  Finite element asymptotic expansion
有限元渐近展式
6)  high order asmptotic expansion
高阶渐近展开式
1.
Under certain hypotheses gets the existence and uniqueness for the solution of the problem, and its high order asmptotic expansions by functional analysis method.
本文研究带有Robin边值条件的四阶非线性常微分方程的奇摄动,在一定的条件下,用泛函分析方法证明摄动问题解的存在唯一性,并给出解的高阶渐近展开式。
补充资料:渐近式


渐近式
asymptotic expression

  渐近式【.、ym ptotiee邓~ion~m~删-p.翻泊.e】 同渐近公式lasymptotzcfo,mula,
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条