1) exact square matrix

完全平方矩阵
2) perfect matrix

完全矩阵
3) Matrix completion problem

矩阵完全化
5) complete incidence matrix

完全关联矩阵
1.
In some condition,if column vectors in a complete incidence matrix are not linearly independent,these sides which are denoted by the column vectors formed a circuit.
在一定条件下简单有向图的完全关联矩阵中列向量线性相关时,它们对应的边构成回路。
2.
Form the complete incidence matrix of any given graph, We can find out whether there is Hamiltonian Path in the graph, we can find it if it exists.
通过分析任意给定图G=〈V,E〉的完全关联矩阵,可以判别图G中是否存在Hamilton路,若存在,可以由其相应找出。
6) local complete Hermitian matrix

局部完全Hermitian矩阵
1.
Then making use of the properties of local complete Hermitian matrix and the relation between principal submatrices of the invertible matrix and its Schur complements, we obtain a matrix inequality for the Hadamard product of two local complete Hermitian matrices.
本文研究了两个经典的Hermitian正定矩阵的Hadamard乘积的Bapat-Kwong矩阵不等式的推广,利用局部完全Hermitian矩阵的性质,根据可逆矩阵的主子矩阵与其Schur补的关系,得到了两个局部完全Hermitian矩阵的Hadamard乘积的矩阵不等式。
补充资料:完全平方数之差
相临两个完全平方数之差可以组成一个等差数列:1,3,5,7,9,11.....所以已知两完全平方数之差,就可求出任意两个完全平方数之差.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条