说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 星形紧致子集
1)  Star compact subset
星形紧致子集
2)  star-compact subset
星紧致子集
1.
The author prove that a subset E of R is a compact subset if and only if E is a star-compact subset.
给出了R的紧致子集的一个新刻画,证明了R的子集E是紧致子集当且仅当E是星紧致子集。
3)  compact subset
紧致子集
1.
Some characterizations of compact subsets of R are given.
给出了R的紧致子集的一个新刻画,证明了R的子集E是紧致子集当且仅当E是星紧致子集。
2.
The following result is shown:If T is a nonexpansive mapping from a closed convex subset D of a Banach space into a compact subset of D and x1 is any point in D,then the sequence {xn} defined by xn+1=2-1(xn+Txn) converges to a fixed point of T,and two conresponding corollaries are given.
证明了以下结论:若T是巴拿赫空间X中的闭凸子集D到紧致子集D中的不放大映射,且x1是D中任一点,那么由xn+1=2-1(xn+Txn)所表示的序列{xn}收敛于T的不动点,并由此得到了两个推论。
4)  compact submanifolds
紧致子流形
1.
This paper deals with the compact submanifolds of constant mean curvature in space forms.
研究空间形式中常平均曲率的紧致子流形,建立了一个关于截曲率下界估计的不等式,通过计算和估计第二基本形式长度平方的Laplacian,得到了关于数量曲率的一个邱成桐型积分不等
5)  compact submanifold
紧致子流形
1.
The compact submanifolds in quasi constant curvature Riemannian manifolds with Parallel Mean Curature Vector were studied.
研究拟常曲率黎曼流形中具有平行平均曲率向量的紧致子流形。
2.
A compact submanifold in the local symmetry and complete Riemann manifold with parallel mean curvature vector field was studied, and a pinching theorem of the square of the length of the second fundamental form of this kind of submanifolds was given.
研究了局部对称完备黎曼流形中的具平行中曲率场的紧致子流形 ,得到这类子流形的第 2基本形式模长平方的一个拼挤定理 ,主要证明了当 Mn 是 Nn+p的紧可定向的子流形且具有平行中曲率向量时 ,∫M32 s2 + 83( 1 -δ) ( p -1 ) n -1 s+ ( 1 -2δ -λ| H | ) ns dv≥ 0 ,其中 λ表示 M的沿中曲率方向的第 2基本形式的最小特征值 。
6)  compact minimal submanifold
紧致极小子流形
补充资料:星形-三角形变换
      一种简单的电路间等效变换。 以阻抗为参数的3个电路元件的星形连接如图1所示, 三角形连接如图2所示。当这两种连接有相同的外特征时,二者便可等效互换。互换的规则是:将星形连接变换成三角形连接,要求后者的参数与前者的参数之间有如下的关系,即   (1)
  反之,将三角形连接变换成星形连接,则需要
   (2)
  当Z1=Z2=Z3=Z时,式(1)简化为Z12=Z23=Z31=3ZZ12=Z23=Z31=Z 时,式(2)简化为式(1)和式(2)称为两种连接间的互换公式。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条