1) multidimensional Laplace transform

多维Laplace变换
2) Laplace transformation

Laplace变换
1.
Laplace transformation and simulation for Stirling cryocooler s vibration maths model;

斯特林制冷机振动数学模型的Laplace变换及仿真
2.
Solving the vibration problem of elastic rod with concentrated mass on one end by Laplace transformation;
再论用Laplace变换法求解端点系有集中质量的弹性杆的振动问题
3.
Solving the vibration problem of an elastic rod with concentrated mass on one end by Laplace transformation;
用Laplace变换法求解端点系有集中质量的弹性杆的振动问题
3) Laplace transform

Laplace变换
1.
Solution of one type of infinite integral by Laplace transform;

用Laplace变换求一类无穷限积分
2.
Solution of one-dimensional consolidation for double-layered ground by Laplace transform;

Laplace变换解双层地基固结问题
3.
Dynamic response of structures calculated by combining finite element with Laplace transform;
Laplace变换—有限元法计算结构动响应
4) Laplace inverse transformation

Laplace逆变换
1.
Solution of detention-including Laplace inverse transformation;

含有延迟的Laplace逆变换的求解
2.
By using Laplace inverse transformation method, a two-dimensional time-dependent partial differ-ential equation for crystal growth is analyzed and the solution is obtained.
对定常速度下二维非稳态晶体生长的数学模型进行了分析,证明了解的唯一性,并运用Laplace逆变换法对该定解问题进行求解,最后给出了一个具体的例子。
3.
Based on the generation theorem in terms of the Laplace transformation and the properties of exponentially bounded integrated C-semigroups,the Laplace inverse transformation for exponentially bounded integrated C-semigroups is deduced.
以积分C半群生成定理的Laplace刻划为基础,利用积分半群的性质,推导出指数有界积分半群的一种表达形式——Laplace逆变换形式。
5) Laplace-stieltjes transformation

Laplace-stieltjes变换
1.
First, the author turns equation into standard form* use Fourier method tomake the solution of question expand by eigenfunction- use Laplace-stieltjes transformation and theme.
本研究首先将方程化为标准形,利用Fourier方法将问题的解按特征函数展开,并利用Laplace-stieltjes变换和等人应用的方法。
2.
In this paper, the authors investigate the growth of entire functions of infinite order represented by Laplace-Stieltjes transformation; the authors obtain two necessary and sufficient conditions and extend some results of Dirichlet series in the whole plane.
该文系统地研究了在全平面上收敛的无限级Laplace-Stieltjes变换的增长性,得到了两个充要条件,推广了全平面上Dirichlet级数的有关结果。
6) Laplace-Hankel transform

Laplace-Hankel变换
1.
The actual solutions can be acquired by inverting the Laplace-Hankel transform.

将这个传递矩阵关系应用于多层地基的每一层,并结合多层地基的连续条件、边界条件以及抽水作用面的连续条件,求得了饱和层状地基的抽水问题在Laplace-Hankel变换域内的解答。
补充资料:Laplace变换
Laplace变换
Laplace transform
Ij户沈变换[u内倪加份七丽;几叨月aCa即eO6Pa30-aan“e] 广义地它是形如 F(,)一丁f(:)。一d:(1) L的LaplaCe积分(LaPhce inte脚1),这里积分是在复z平面的某一围道L上进行的,它在定义在L上的函数f(:)和复变数p=叮+i;的解析函数F(p)之间建立了一个对应关系.很多形如(l)式的积分由P,Uplace作了考察(见汇11). 狭义地,Up玩。变换理解为单侧助p廊e变换(one一sid刻UPlaceu艺nsfonn) F‘p,一L If,‘,,一丁f(亡)。一d。,‘2, 0这样称呼是为了区别于双侧LaPlace变换(t场。一sjded肠p俪etra璐form) F(,)一L of](,)一丁f(:)。一d:·(,)LaP玩。变换是一类特殊的积分变换(泊魄刘trans-form);(2)式或(3)式的变换与F以州er变换(Fo~tl习J侣允加)有紧密联系.双侧Lap玩e变换(3)可以看成函数f(Oe一“的凡~变换,而单侧Lap阮e变换(2)可以看成当O
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条