说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多维Laplace变换
1)  multidimensional Laplace transform
多维Laplace变换
2)  Laplace transformation
Laplace变换
1.
Laplace transformation and simulation for Stirling cryocooler s vibration maths model;
斯特林制冷机振动数学模型的Laplace变换及仿真
2.
Solving the vibration problem of elastic rod with concentrated mass on one end by Laplace transformation;
再论用Laplace变换法求解端点系有集中质量的弹性杆的振动问题
3.
Solving the vibration problem of an elastic rod with concentrated mass on one end by Laplace transformation;
用Laplace变换法求解端点系有集中质量的弹性杆的振动问题
3)  Laplace transform
Laplace变换
1.
Solution of one type of infinite integral by Laplace transform;
用Laplace变换求一类无穷限积分
2.
Solution of one-dimensional consolidation for double-layered ground by Laplace transform;
Laplace变换解双层地基固结问题
3.
Dynamic response of structures calculated by combining finite element with Laplace transform;
Laplace变换—有限元法计算结构动响应
4)  Laplace inverse transformation
Laplace逆变换
1.
Solution of detention-including Laplace inverse transformation;
含有延迟的Laplace逆变换的求解
2.
By using Laplace inverse transformation method, a two-dimensional time-dependent partial differ-ential equation for crystal growth is analyzed and the solution is obtained.
对定常速度下二维非稳态晶体生长的数学模型进行了分析,证明了解的唯一性,并运用Laplace逆变换法对该定解问题进行求解,最后给出了一个具体的例子。
3.
Based on the generation theorem in terms of the Laplace transformation and the properties of exponentially bounded integrated C-semigroups,the Laplace inverse transformation for exponentially bounded integrated C-semigroups is deduced.
以积分C半群生成定理的Laplace刻划为基础,利用积分半群的性质,推导出指数有界积分半群的一种表达形式——Laplace逆变换形式。
5)  Laplace-stieltjes transformation
Laplace-stieltjes变换
1.
First, the author turns equation into standard form* use Fourier method tomake the solution of question expand by eigenfunction- use Laplace-stieltjes transformation and theme.
本研究首先将方程化为标准形,利用Fourier方法将问题的解按特征函数展开,并利用Laplace-stieltjes变换和等人应用的方法。
2.
In this paper, the authors investigate the growth of entire functions of infinite order represented by Laplace-Stieltjes transformation; the authors obtain two necessary and sufficient conditions and extend some results of Dirichlet series in the whole plane.
该文系统地研究了在全平面上收敛的无限级Laplace-Stieltjes变换的增长性,得到了两个充要条件,推广了全平面上Dirichlet级数的有关结果。
6)  Laplace-Hankel transform
Laplace-Hankel变换
1.
The actual solutions can be acquired by inverting the Laplace-Hankel transform.
将这个传递矩阵关系应用于多层地基的每一层,并结合多层地基的连续条件、边界条件以及抽水作用面的连续条件,求得了饱和层状地基的抽水问题在Laplace-Hankel变换域内的解答。
补充资料:Laplace变换


Laplace变换
Laplace transform

Ij户沈变换[u内倪加份七丽;几叨月aCa即eO6Pa30-aan“e] 广义地它是形如 F(,)一丁f(:)。一d:(1) L的LaplaCe积分(LaPhce inte脚1),这里积分是在复z平面的某一围道L上进行的,它在定义在L上的函数f(:)和复变数p=叮+i;的解析函数F(p)之间建立了一个对应关系.很多形如(l)式的积分由P,Uplace作了考察(见汇11). 狭义地,Up玩。变换理解为单侧助p廊e变换(one一sid刻UPlaceu艺nsfonn) F‘p,一L If,‘,,一丁f(亡)。一d。,‘2, 0这样称呼是为了区别于双侧LaPlace变换(t场。一sjded肠p俪etra璐form) F(,)一L of](,)一丁f(:)。一d:·(,)LaP玩。变换是一类特殊的积分变换(泊魄刘trans-form);(2)式或(3)式的变换与F以州er变换(Fo~tl习J侣允加)有紧密联系.双侧Lap玩e变换(3)可以看成函数f(Oe一“的凡~变换,而单侧Lap阮e变换(2)可以看成当OJ。时收敛而当ReP=叮<叮。时发散;这数a。称为(条件)收敛横坐标(a比c姚a of(conditional)coll祀理户Ice);2)积分(2)对所有的p都收敛,在这种情形下,令。。“一刃;3)积分(2)对所有的p发散,在这种情形下,令6。二+①.如果口。<+的,则积分(2)表示一个在收敛半平面(half·plane of con代rg-ence) Rep>。。内的单值解析函数F(p).通常限于考虑绝对收敛的积分(2).使得积分 J}f(,)}。一““‘ 0存在的那些6的最大下界称为绝对收敛横坐标(a比cl-ssaofa比。1吹。01】Ve醚笋nce)a。,,。簇叮。.如果a是使得}f(:)}=O(e“‘)(:一‘的)的那些口的下确界,则。。“a;数a有时称为f(t)的增长指数(j。山洗of growth) 在一定的附加条件下,f(t)能由它的UPlace变换F(p)唯一地重新得到.例如,如果f(t)在t。的某邻域中有界变差或如果f(0分段光滑,则Up咏e变换的反演公式(~ionform“巨forthe助P」ace七2贺允rm) 夕,、、_f(r。+O)+f(r。一O) f(t。)二止‘之‘止二一~‘二二一-‘二三=(4、 2 口+于R =钾一俪fF(,)e“‘’dp,叮>“。 2二i户必。硬‘,成立. 公式(2)和(4)使得有可能得到施加在象原和变换上的运算之间的很多关系式,也能得到经常遇到的象原的变换表.所有这些组成了算子演算(。详功-tio耐cakul璐)的初等部分. 在数学物理中,多维肠p阮e变换 F(,)一丁f(:)e一‘,,!,、:(5) C+有重要应用,这里t二(:,,…,t。)是、维E孤lid空间R”的点,夕=(夕,,…,尸。)“a+i;二(,:,‘’‘,,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条