说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 线性频散特征
1)  linear dis-persion characteristic
线性频散特征
2)  Rossby wave
频散特征
3)  frequency dispersion
频散特性
1.
Characteristics of the frequency dispersion in cylindrical shells filled with fluid considering hydrostatic pressure
考虑流体静压时充液圆柱壳的频散特性分析
2.
It's main idea that making use of frequency dispersion of Rayleigh wave to reveal geology structure of low layer.
其主要思想是利用瑞雷波的频散特性来反映浅层地质问题。
4)  dispersion [英][dɪ'spɜ:ʃn]  [美][dɪ'spɝʒən]
频散特性
1.
The dispersion,extensional phase velocities,group velocities and amplitude ratio of various waves are obtained.
基于经典的Flugge弹性薄壳理论和Helmholz波动方程,研究了充液圆柱壳的频散特性以及相速度和群速度特性,利用数值方法求得了特征方程的实数、虚数和复数根,并分别揭示了它们的物理含义,分析了内流场对于壳体动态特性的影响,给出了壳体中功率流和流体载荷的变化情况,从能量角度研究了充液圆柱壳的动态特性。
2.
With recursive matrix method,the dispersion equation of Lamb wave in layered plates is derived in this paper,along with the expressions for displacement and stress distributions.
利用矩阵递推方法,建立了层状板中Lamb波的特征方程以及相应的位移和应力分布计算公式,由此分析了双层板、软夹层板和硬夹层板中Lamb波的频散特性,特别指出软夹层的存在对Lamb波的频散特性有显著影响。
3.
To set the coefficient determinant for zero to solve the characteristic equation of one-layered plate, and to calculate the dispersion equation of any layered plates with recursive matrix method.
层状板当上下表面为自由边界面时板中将会产生板波,文中通过求解行列式和采用传递矩阵法分别得到了单层板和任意层板的特征方程,研究了单层板和双层板中板波的频散特性和板中位移和应力的分布,讨论了板波的动力响应,对测点的布置有一定的指导意义。
5)  dispersion characteristic
频散特性
1.
The coupled equations are solved by Muller method,and therefore the spectral dispersion characteristics are obtain.
对不同静水压力下圆柱壳的频散特性进行研究,初步揭示无限长圆柱壳振动受到水深影响的变化规律。
6)  dispersive characteristics
频散特性
1.
The influence of innerradiusthickness ratio on the dispersive characteristics of guided waves for lower in free pipes has been analyzed.
在自由管材的情况下,对于内径 壁厚比变化对管材中较低阶纵向导波模式频散特性的影响进行了分析。
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条