1) Similar zero and pole points

近似零点
2) zeroth order approximation

零级近似
3) approximation nilpotency

近似幂零性
1.
Paper has discussed approximation nilpoteney of aletrnate algebra A The discussion gave deep understanding of relationship between nilpoteney and availability of alternate algebra A In addition to it, this paper puts forward radical concept of approximation nilpotency of alternate algebra A This concept and its properties will provide new knowlege for the structure of alternate algebra
继交错代数A的近似幂零性讨论之后,现提出交错代数A的近似幂零根的概念。
4) near nil radical

近似诣零根
1.
We show that the supersemiprime radical is e qual to the near nil radical which was defined by XIE Bang_jie in .
证明了超半素根与谢邦杰在 [2 ]中所定义的近似诣零根是相等
5) saddle-point approximation

鞍点近似
1.
A non-Gaussian approximation method,based on the moment generation function of the decision statistic and saddle-point approximation,is introduced to evaluate the statistic characteristics of multi-access interference,shot noise and thermal noise and crosscorrelation.
为了精确分析相位编码光码分多址系统误码率性能,提出了一种基于判决变量的矩母函数和鞍点近似的非高斯近似方法,该方法能够精确考虑多址干扰、散粒噪声、热噪声各自的统计特性和相互间的非加性关系。
2.
The impact of multiple access interference(MAI),ISI and self beat noise on system performance is analyzed by using saddle-point approximation and the bit error rate(BER) expression of the system is presented.
利用鞍点近似法分析了多址干扰(MAI)、码间串扰、自差拍等噪声对系统性能的影响,给出了系统误码率公式。
3.
Compute VaR taking advantage of saddle-point approximation and make VaR to be the function of asset positions under the frame of CreditRisk+ and find the optimal solution for the model by genetic algorithm.
本文在CreditRisk+框架下,提出一个在不允许卖空条件下,不需对VaR的性质做出前提假定的新解法:将鞍点近似法用于计算VaR,在资产头寸与VaR之间建立起函数关系,采用遗传算法寻找模型的近似最优解。
6) Saddlepoint Approximation

鞍点近似
1.
Aimed at this purpose a method to conduct approximate confidence intervals about thescale parameter of Logistic response distribution is presented by used binary response dataand the saddlepoint approximation.
为此,本文基于 Logistic 响应分布,在二元响应数据下,应用鞍点近似方法构造了刻度参数的近似置信区间,并进行了模拟研究。
补充资料:函数零点
我们把函数y=f(x)的图像与横轴的交点的横坐标称为这个函数的零点,即方程的根。
f(x)的零点就是方程f(x)=0的解。这样就为我们提供了一个通过函数性质确定方程的途径。函数的零点个数就决定了相应方程实数解的个数。
若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条