1) nest algebra idempotent element

套代数、幂等元
2) idempotent MV-algebra

幂等MV-代数
3) completely idempotent algebra

完全幂等代数
1.
It is obtained that the commutative completely idempotent algebra which has unit element and no zero factor is a extension field on F.
本文首先得出哉F上有单位元无零因子交换完全幂等代数A是F的扩域的结论,给出域F上二维完全幂等代数的结构;其次给出域F上有单位元交换代数是完全幂等代数的一个刻化,并且得出域F上的完全幂等代数是L-半单的结果。
4) Idempotent operator algebras

幂等算子代数
1.
Idempotent operator algebras acting on a Hilbert space H are defined.

给出幂等算子代数的一个刻画。
5) idempotent
[英][ai'dempətənt] [美][aɪ'dɛmpətənt]

幂等元
1.
Speciality of idempotent element on finite semigroups;

有限半群周期元和幂等元的特征
2.
The properties of idempotents that have not zero column in Sn;

S_n中不含零列的幂等元的性质
3.
A subsemigroup generated by the idempotents of T_E(X) ZOU Ding-yu,PEI Hui-sheng,WANG Shi-fei;
T_E(X)的由幂等元生成的子半群
6) idempotents

幂等元
1.
Idempotents and primitive idempotents have very important station in the ring.

幂等元与本原幂等元在环中有非常重要的地位与作用。
2.
In the case of(Char(F_q),|G|)=1, we provide a method that writing down directly all the primitive idempotents of related polynomial ring,and hence that of all the minimum cyclic codes.
当有限域的特征不整除群的阶时,给出了直接写出相应的多项式环的本原幂等元的方法,从而可以直接写出所有的极小循环码。
补充资料:幂等元的半群
幂等元的半群
idempotents, semi -group of
式.幂等元的半群【i山和四把血,胭山.gr0llPof;“朋MnoTe“-功。no刀yll.担na」,幂等元半群(idemPotent semi-gr。叩) 每个元素皆为幂等元(记enlPo忆nt)的半群.幂等元半群亦称为带(恤nd)(这与半群的带(比11dof~一grouP)的概念相容:幂等元半群是单元素半群的带).交换的幂等元半群称为半格(~一扭仗元c);这术语与它在偏序集理论中的应用相容:若对交换幂等元半群S考虑其自然偏序,则元素a,b任S的最大下界正是ab.半格是二元半格的次直积.若半群S满足恒等式尤y=x,xy=y中的一个,则称S为奇异的(sin孚har);在第一种情形,S是左奇异的(left-sin酗ar),或左零半群(~一gro叩of left Zero‘),第二种情形是右奇异的(石乡止.singr血r)或右零半群(s咖一gro叩of rigllt zeros).一个半群称为矩形(既-扭ng口ar)半群,若它满足恒等式义yx二戈(该术语有时在稍广的意义下使用,见【11).对半群S,下列条件是等价的:1)5是矩形半群;2)5是理想单的幂等元半群(见单半群(s加P1e~·gro叩));3)S是幂等元完全单半群(c omplete】y一sirnples洲一grouP);及4)S同构于直积L xR,其中L是左奇异半群而R是右奇异半群.每个幂等元半群是C五成阔半群(Oifford sen卫·gro叩)且分裂成矩形半群的一个半格(亦见半群的带(比nd ofs洲·groups)).这个分裂是幂等元半群的许多性质研究的起点.幂等元半群是局部有限的 幂等元半群已从各种观点得到研究,包括簇论的观点.令所有幂等元半群的簇为见,在【4]一16]中完全地描述了黔的所有子簇的格;它是可数的,分配的,且簇见的每个子簇由一个恒等式确定.这个格可图解如下: II 二,:二J,,:角二,:.二:,, _1 FJ.工V今飞冲匕母丁yr‘yl 艺卜,’=Z,’F仁之子洲叼2盛.丢二月工yZ二yXZ 华‘\\工岁夕zIt, J二y图中对黔中较低层的一些簇给出了与其相应的恒等
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条