1) convex method

凸性方法
1.
By means of the convex method,a discussion about the blow-up of classical solutions and weak solutions of the nonlinear hyperbolic equations with boundary conditions is presented, and the blow-up property of these solutions under certain conditions is obtained, and also the estimation of blow-up time is given.
利用凸性方法讨论了非线性双曲型方程(组)的边值问题古典解及弱解的爆破,得到了这些问题的解在一定条件下的爆破性,并给出了产生爆破所需的条件及爆破时间的估计。
2.
By applying the maximum value theory of parabolic equation and convex method,it is proved that the blow up of solution in a definite time under some assumed conditions.
利用抛物型方程最大值原理和凸性方法证明了该问题的解在有限时间内爆破。
2) concavity analysis

凸性分析方法
1.
Using the technique of concavity analysis, the sufficient condition of nonexistence of global solutions to the equations with dynamic boundary conditions and positive initial energy is obtained.
利用凸性分析方法,在方程具有边界条件和正初始能量情况下得到整体解不存在的充分条件。
3) convex cone method

凸锥方法
5) letterpress method, relief process

凸印方法
6) method of convex combination

凸组合方法
1.
In this paper,the method of convex combination is used to construct the osculatory rational interpolating function.
利用凸组合方法可方便地构造出数量值切触有理插值函数或向量值和矩阵值函数,其构造过程公式化,便于在计算机上实现,且计算量较小,具有广阔的应用前景。
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条