1) Anelastic compressible fluid

滞弹性可压流体
2) elastic fluid

弹性介质,可压缩流体
3) incompressible solid

不可压缩弹性体
1.
It means that most of the classic linear elastic basic equations are not available for the incompressible solid.
对于不可压缩弹性体,泊暴比μ=0。
4) fluid compressibility

流体可压缩性
1.
The BEM equation for acoustic analysis in shallow water and the corresponding coupled FEMBEM vibration equation are established,and then the impacts of water depth and the fluid compressibility on the natural frequencies and mode shapes for underwater structures are discussed.
本文首先建立了浅水域声学边界元方程和相应的FEM/BEM耦合振动方程,探讨了水深对结构振动固有频率和振型的影响,流体可压缩性对结构振动固有频率的影响。
2.
The influonce of fluid compressibility on structural vibration in the half_space fluid domain is discussed.
本文探讨了流体可压缩性对半无限流体域中结构振动的影响。
5) viscous compressible fluid

可压缩粘性流体
1.
The adaptive physical model on Coutte Flow based on a motional coordinate is presented,and a solution of a equation for velocity, temperature and rate of heat transfer of a viscous compressible fluid is obtained.
在基于动坐标系的库特剪切流的物理模型上 ,提出了两平板间可压缩粘性流体的温度 ,流速与热流速率间的关联式。
补充资料:弹性流体动压润滑
摩擦体表面的弹性变形和润滑液体的压力- 粘度效应,对润滑膜厚度和压力分布起显著影响的流体动压润滑。滚动轴承、齿轮传动和凸轮机构等点、线接触的摩擦副在一定条件下都有可能形成弹性流体动压润滑。计算弹性流体动压润滑膜厚度时,如使用经典润滑力学方程(如马丁方程),其值往往与实测结果差别极大。20世纪40年代末,苏联A.M.埃特尔和A.H.格鲁宾初步建立了弹性流体动压润滑计算方程。60年代,英国D.道森和G.R.希金森运用迭代程序进行数值计算,求得两弹性圆柱体平行接触面间的最薄润滑膜的计算方程。70年代,英国K.L.约翰逊、C.J.胡克和美国H.S.郑绪云等均曾提出点、线接触摩擦副的弹性流体动压润滑计算方程和相应的适用范围。图为典型的弹性流体动压润滑膜压力分布。在弹性流体动压润滑中,常采用膜厚比判断接触表面的润滑状态:式中h为油膜厚度;为综合表面粗糙度;h0为接触表面间的最薄润滑膜厚度;1、2 分别为两摩擦表面粗糙度的均方根值。一般说来,当< 1时,会产生粘着;1≤≤3时,摩擦副处于部分弹性流体动压润滑状态,有可能发生粘着磨损;> 3时,摩擦副处于全膜润滑状态,可认为不会发生粘着磨损。使用一般矿物油润滑和一般加工质量的几种常见的摩擦副,其膜厚比范围约为:滚动轴承,=1~2.4;齿轮传动,=0.6~1.8;凸轮机构,=0.3~1.2。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条