说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分次广义诣零根
1)  graded generalized nil radical
分次广义诣零根
1.
For any semigroup-graded ring R =R_x, the constructions of graded stronglyprime radical and graded generalized nil radical of R are given.
对于半群分次环的分次强素根和分次广义诣零根,分别给出它们的构造。
2)  graded nil radical
分次诣零根
3)  generalized nil radical of module
模的广义诣零根
4)  generalized nil radical of ring
环的广义诣零根
5)  nil-nilpotent graded Γ-ideal
诣零分次Γ理想
6)  nil radical
诣零根
1.
Those are strongly nil radical N S , quasi strongly nil radical N QS ,nil radical N ,quasi nil radical N Q and B nil radical N B (Baer module nil radical).
本文旨在系统阐述WeakerΓN-环的五个诣零根。
2.
This paper show: if M is a ring with the prime radiCal P(M), the socle Soc(M),the nil radical N(M) and the Levitzki nil radical L(M),then regarded as a Pring with P=M,Pp(M)=P(M),Socp(M)=Soc(M),Np(M)=N(M) and LP(M)=L(M).
证明了如果M是一个环,具有素根P(M),底座Soc(M),诣零根N(M)和Levitzki诣零根L(M),则M作为一个Γ-环(取Γ=M)有:P(M)=PΓ(M),Soc(M)=SocΓ(M),N(M)=Nr(M)和L(M)=LΓ(M
3.
In this paper, the definition of nil radical of zero normal NCD-ring R is given, and the proof is made for that nil radical n(R) is the greatest ideal of R and R / n(R)has no non-zero nil ideals when n(R) is the smallest ideal of R.
本文给出零正规NCD-环R的诣零根n(R)的定义,完成了“零正规NCD-环R的诣零根n(R)是R的最大理想及n(R)是使商环R/n(R)无非零诣零理想的最小理想”的证明。
补充资料:分诣
1.分往;分派。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条