说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 傅里叶变换合成法
1)  Fourier-transform synthesis method
傅里叶变换合成法
1.
Based on the theory of Fourier-transform synthesis method,a minus filter on K9 substrate was synthesized.
基于傅里叶变换合成法的基本原理,合成了一个K9基底上的负滤光片,合成的渐变折射率薄膜具有期望光学特性,但实际制备难度很大,因此将其细分为足够多层离散折射率的均匀薄膜,由于实际薄膜材料种类有限,不能获得任意折射率膜层,鉴于两层高低折射率薄层可近似为一层中间折射率膜层的思想,将膜系转化成一个可实际制备的膜系结构:膜系采用ZrO2和SiO2两种膜料,膜层总数为183层,经单纯形调法优化后,膜层总厚度为7。
2)  joint Fourier transformation
联合傅里叶变换
1.
After analyzing the necessity of pixel length measurement in the CCD camera system and the disadvantage of the drone method,the paper introduces the principle of joint Fourier transformation and the device equipment and method of measuring the pixel length of CCD camera system,and analyzes the data of measure.
分析了CCD图像采集系统的像素间距测定的必要性,指出了靶板标定方法的缺点,介绍了联合傅里叶变换测量原理,给出了用测定CCD图像采集系统像素间距的测量装置以及测量方法。
3)  Fourier transform
傅里叶变换法
1.
In the paper, a solution for heat condution problem in an infinitely long bar with composite transform method is obtained, which derived from Fourier transform and Laplace transform.
应用拉普拉斯变换法和傅里叶变换法的特点 ,提出复合变换法 ,并应用复合变换法求解无界杆的热传导问题 。
4)  Fourier transform method(FTM)
傅里叶变换法(FTM)
5)  Fourier-transform method
傅里叶合成法
1.
Fourier-transform method for the design of gradient-index thin film;
傅里叶合成法设计渐变折射率薄膜
6)  Fourier transform
傅里叶变换
1.
Performance analysis of filtering algorithms based on Fourier transform;
常见傅里叶变换的滤波性能分析
2.
Transient harmonic analysis algorithm using wavelet transform and Fourier transform;
小波变换与傅里叶变换相结合的暂态谐波分析方法
3.
A palmprint recognition system using two-stage match method based on Fourier transform;
一种基于傅里叶变换的双级匹配掌纹识别系统
补充资料:傅里叶级数与傅里叶积分


傅里叶级数与傅里叶积分
Fourier series and integrals

傅里叶级数与傅里叶积分(F ourierse-ries and integrals) 傅里叶级数与傅里叶积分是研究周期现象的数学工具,它在波(例如光波和声波)的运动、振动力学系统(例如振动的弦)和天体轨道理论中是必不可少的。傅里叶级数及下面将要讨论的有关论题,在其他数学分支中有着重要的应用,其中特别值得提出的是概率论和偏微分方程。这个课题本身所促成的一些学科在纯数学的研究中也占有突出的位置。 单实变量函数f有周斯T,如果对每个t,有f(t+T)一f(t)。具有给定周期T的函数的最简单例子是简谐函数,即形如f(t)=aneosn叫+占。sin明的函数,其中。2二T一’是基频,a。,b。是常数。傅里叶级数的应用,其基本思想是:任意满足相当宽的条件且周期为T的函数f能够表为如下式所示的一些纯简谐函数的叠加: f(‘)一艺(a。eosn。:+。。sinn。‘),(1)或者利用复指数表为如f(‘)一艺c。e一(2)所示更为方便的形式。 假定式(2)逐项积分是合法的,则通过简单的计算表明,式‘一T一‘}f(t)。一‘”“dt(3)(积分区间可以是长为T的任意区间)成立。由此可诱导出傅里叶级数的正式定义。假设f是使得积分睽一f(‘’1“‘(4)存在且为有限的周期T的函数,由式(3)定义的系数{‘)是f的傅里叶系数,而式(2)中的级数是f的傅里叶级数。这些系数唯一地确定函数.即若对每一n有‘二一。,则f本质上是零函数。此外,还可以证明,许多对于函数的形式运算,施加到级数逐项进行仍是正确的。由此立即引出两个重要的问题。设s、(,)一名e,了一(5)是f的傅里叶级数的第N个部分和,第一个问题是当N趋于co时:斌t)是否收敛于f(t)?第二个问题是给定了一个序列(c。},它是否为某一函数的傅里叶系数序列? 一个连续函数的傅里叶级数不一定处处收敛。如果t0是一给定点,sN(t。)趋于f(t。)的收敛性依赖于f(t)在t。的邻域内关于t的性态。然而,如果我们取平均的部分和a、一(N+1)一,习s,,(6)则对于连续的f,将一致地有如“f。仅仅知道傅里叶级数的普通收敛性,在应用上并不重要。由于计算上的目的.必须知道一些有关收敛速度的知识。下面的论述这个问题的定理的例子:假设}df/dt}(M处处成立,则有},(,)一(‘),、六M(N+1)一。 黎曼一勒贝格引理断言,若{c。}是一个可积函数的傅里叶系数序列,则当n~士二~时伽~。。但逆命题不真,即并非系数趋于零的所有三角级数艺二‘““(7)都是傅里叶级数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条