1) map with skew nilpotent value
有斜幂零值映射
2) Acyclic set-valued mapping
零调集值映射
3) plastic of the power mapping
幂塑映射
1.
in this paper, the concept of the plastic of the power mapping is introduced, With the relationship of sequence, We discussed the properties of the plastic of the power mapping, Some of the results for a class of the dots in space under the condition for the power transformation are presented.
引入幂塑映射概念,利用序关系讨论了幂塑映射的性质,并给出了一类空间点在幂变换下的一些结果。
4) idempotent mapping
幂等映射
1.
The k-th idempotent mapping on the set [1,n] is firstly defined in this paper,the counting formula of which is obtained by circulating decomposition of permutation groups.
本文首先给出集[1,n]上k-次幂等映射的概念,用置换群的循环分解给出集[1,n]上k-次幂等映射的计数公式,接着定义了连象映射和保小映射,不但得到它们的计数公式,还得到一个第2类斯特林数的关系式及保小映射总数指母函数系数的变化趋势,最后给出交错映射及上下置换的概念并给出关于上下置换指母函数简明表达式的一个简单证明。
5) power map
幂映射
1.
Let R be a commutative ring and f:R→R a power map defined by f(r)=r ̄nLet x and y be two periodic points of f witli periods k and l respectively.
设R是个交换环,带离散拓扑,是由f(r)=r ̄n(任r∈R)定义的幂映射。
6) bounded range
有界值域映射
1.
Suppose that E is an uniformly smooth real Banach space,and K is a nonempty closed convex subset of E,T:K→K is Φ-strongly pseudocontrictive mapping,and T=T1+T2,T1:K→K is Lipschitz mapping,T2:K→K is a continuous mapping with the bounded range R(T).
其中T=T1+T2,T1:K→K为Lipschitz映射,T2:K→K为具有有界值域映射。
补充资料:幂零Lie代数
幂零Lie代数
Lie algebra, nilpotent
幂零lie代数【liealgebI’a.浦训t即t;瓜朋~。代Hm明盯e6Pal 域k上满足下列等价条件之一的代数(司罗bla)g: l)有g的理想的有限降链{9.}。“、。,使得g。=g,g。={o},且对o簇i
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条