1) Composite Materials Dynamic Vibration Absorber

复合材料动力吸振器
2) MDVA

复式动力吸振器
1.
An optimum design method of Multiple Dynamic Vibra - tion Absorbers(MDVA)is studied.

本文以简支薄板为主振系统,对其附加复式动力吸振器,提出以输入系统的净功率流在整个激励频带内的总声功率级为控制量的优化设计方法。
3) composite dynamics

复合材料动力学
1.
The paper shows an application of experimental and numerical study on composite dynamics.

作为复合材料动力学实验与数值研究的应用实例 ,实验研究采用正交异性动态光弹性方法 ,数值分析运用各向异性介质的时域边界元方法。
4) dynamic vibration absorber

动力吸振器
1.
Optimal design of parameters of dynamic vibration absorber in deep sea;

深海中动力吸振器的相关参数最优化设计
2.
Simulative design of dynamic vibration absorber;

阻尼动力吸振器的仿真设计
3.
Study of air-spring-based semi-driving dynamic vibration absorber;

空气弹簧半主动式动力吸振器的研究
5) vibration absorber

动力吸振器
1.
It is essential to sample the external excitation and extract its frequency through FFT when the current semi active control strategy based on a piecewise linear vibration absorber is applied to the vibration control.
在采用分段线性动力吸振器的振动半主动控制过程中 ,经过一段时间的采样后 ,再对采样信号作谱分析 ,故控制系统存在时滞 ,不能跟踪外激励的快速变化。
2.
In the paper,by using Fourier Series,basic harmonic balancing approximation and optimum numerical iterration,the response computation of a two-degrees-of-freedom dry friction damped vibration absorber system with velocith-dependent variable coefficient of sliding friction under harmonic excitation is discussed.
通过一个数值例分析 ,考察了干摩擦动力吸振器的性能及简化为理想干摩擦模型时带来的计算误差。
6) dynamic absorber

动力吸振器
1.
Analysis on active suspensions with dynamic absorbers;

装有动力吸振器的主动悬架性能分析
2.
Study on suspensions with dynamic absorbers;

装有动力吸振器的汽车悬架性能分析
3.
Flutter suppression for sandwich panel using dynamic absorber

动力吸振器用于夹层壁板颤振抑制的研究
补充资料:高聚物吸振材料
一种能吸收振动波,防止或减轻机械振动对部件的破坏的高聚物材料。它广泛用于火箭、导弹、人造卫星、精密机床、精密仪器等的防振及高层建筑的抗震等。此外,也可用作吸收噪声的材料。
高聚物吸振材料是阻尼材料的一种。其吸振原理是利用其粘弹性中的粘性阻尼部分,把吸收的能量以热的形式散失。高聚物在动态应力作用下,形变由于粘性而滞后于应力,其间所呈现的相位差角δ的正切tgδ称为损耗角正切,它表示形变时损耗能量与储存能量之比,即表示粘弹材料阻抑机械振动能力的大小,或吸振能力的大小(见高聚物粘弹性)。在玻璃化温度区,高聚物具有最大的损耗角正切和吸振能力。不同结构的高聚物具有不同的玻璃化温度和吸振性能。高聚物的玻璃化温度并非一固定值,它与作用频率有关。因此应根据振动频率和使用温度的要求选择合适的高聚物作吸振材料。
均聚物的玻璃化转变区都较窄,一般只有10~20℃,不能满足吸振的要求。通过高聚物的共混或接枝共聚合、嵌段共聚合以及最近发展的互穿网络(见互穿网络聚合物)来调整高聚物之间的相容性、交联密度及分子形态等,可以增宽玻璃化转变区域,扩大使用温度和频率范围。这类吸振材料常以自由阻尼层或约束阻尼层的方式与部件结合进行吸振,统称阻尼结构,这是不改变原设计而进行减振的方法。自由阻尼层是将吸振材料直接粘贴或喷涂在需要减振的部件上,外面不覆盖金属片。采用这种吸振方式要求吸振材料具有高而宽的阻尼值和较大的模量值。约束阻尼层需要有一层刚度大而薄的金属片或刚性复合材料覆盖在吸振材料外面,将吸振材料夹在需要吸振的部件与金属片之间,从而提高其吸振性能。
一般认为丁腈橡胶、丁基橡胶、聚氨酯弹性体、聚氧化乙烯-苯乙烯嵌段共聚物、增塑的聚氯乙烯、聚乙烯醇缩丁醛、聚甲基丙烯酸甲酯、氯乙烯-乙酸乙烯酯共聚物、聚氯乙烯的共混物,半互穿网络型的乙丙三元和乙丙二元橡胶、互穿网络型的聚异丁基醚和聚丙烯酸甲酯都可作为吸振材料。
高聚物吸振材料是阻尼材料的一种。其吸振原理是利用其粘弹性中的粘性阻尼部分,把吸收的能量以热的形式散失。高聚物在动态应力作用下,形变由于粘性而滞后于应力,其间所呈现的相位差角δ的正切tgδ称为损耗角正切,它表示形变时损耗能量与储存能量之比,即表示粘弹材料阻抑机械振动能力的大小,或吸振能力的大小(见高聚物粘弹性)。在玻璃化温度区,高聚物具有最大的损耗角正切和吸振能力。不同结构的高聚物具有不同的玻璃化温度和吸振性能。高聚物的玻璃化温度并非一固定值,它与作用频率有关。因此应根据振动频率和使用温度的要求选择合适的高聚物作吸振材料。
均聚物的玻璃化转变区都较窄,一般只有10~20℃,不能满足吸振的要求。通过高聚物的共混或接枝共聚合、嵌段共聚合以及最近发展的互穿网络(见互穿网络聚合物)来调整高聚物之间的相容性、交联密度及分子形态等,可以增宽玻璃化转变区域,扩大使用温度和频率范围。这类吸振材料常以自由阻尼层或约束阻尼层的方式与部件结合进行吸振,统称阻尼结构,这是不改变原设计而进行减振的方法。自由阻尼层是将吸振材料直接粘贴或喷涂在需要减振的部件上,外面不覆盖金属片。采用这种吸振方式要求吸振材料具有高而宽的阻尼值和较大的模量值。约束阻尼层需要有一层刚度大而薄的金属片或刚性复合材料覆盖在吸振材料外面,将吸振材料夹在需要吸振的部件与金属片之间,从而提高其吸振性能。
一般认为丁腈橡胶、丁基橡胶、聚氨酯弹性体、聚氧化乙烯-苯乙烯嵌段共聚物、增塑的聚氯乙烯、聚乙烯醇缩丁醛、聚甲基丙烯酸甲酯、氯乙烯-乙酸乙烯酯共聚物、聚氯乙烯的共混物,半互穿网络型的乙丙三元和乙丙二元橡胶、互穿网络型的聚异丁基醚和聚丙烯酸甲酯都可作为吸振材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条