1) series jet

串联喷射
2) in-line educator

串联喷射器
3) electrospray tandem mass spectrometry

电喷雾串联质谱
1.
In the procedure a solid-phase extraction for the isolation of Buprenorphine was employed,The samples were analyzed by reversed-phase high performance liquid hromatography coupled with electrospray tandem mass spectrometry.
目的建立了生物样品中丁丙诺啡的高效液相色谱-电喷雾串联质谱检测方法。
4) Electrospray ionization tandem mass spectrometry

电喷雾串联质谱
1.
Electrospray ionization tandem mass spectrometry(ESI-MSn) was applied for simultaneous determination of norditerpenoid alkaloids in the roots of Aconitum kusnezoffii without any chemical isolation.
由于这些生物碱的结构相似,在电喷雾串联质谱中碎裂方式相同,因此根据电喷雾串联质谱结果确定了这些生物碱的结构。
2.
A rapid method was applied to analyze the ethanol extract of the roots of aconitum brachypodum by using electrospray ionization tandem mass spectrometry (ESI-MS/MS) directly.
利用电喷雾串联质谱 (ESI MS MS)对雪上一支蒿的乙醇提取液进行了直接分析 ,方法简便 ,直观 ,用样量少。
3.
A novel method was developed and validated for the rapid and simultaneous determination of 8 poisonous alkaloids,ephedrine,pilocarpine,strychnine,atropine,brucine,aconitine,camptothecin,and koumine,in human blood using liquid chromatography-electrospray ionization tandem mass spectrometry in the multiple reaction monitoring(LC-ESI-MRM) mode.
建立了高效液相色谱-电喷雾串联质谱同时检测血液中8种有毒生物碱的方法。
5) ESI-MSn

电喷雾串联质谱
1.
by the method of ESI-MSn.

方法:利用电喷雾串联质谱(ESI-MS)对蒙药草乌的水煎煮液进行了直接分析。
2.
kusnezoffii was analyzed by the method of ESI-MSn.

方法利用电喷雾串联质谱技术对蒙药草乌芽的乙醇提取液进行了直接分析鉴定。
6) series pulsed nozzle

串联型脉冲喷嘴
补充资料:串联逆变电路
具有串联谐振式负载的逆变电路。生产中用以构成静止式中频加热电源。串联逆变电路有两个特点:①直流电源为电压源,逆变入端并联大电容 Cd,因而入端电压 ud平稳连续(见电压型逆变电路);②负载是处于低端失谐的串联谐振电路,呈容性,故可采用负载换流方式(见负载换流式逆变电路)。因此,串联逆变电路又称负载换流式电压型逆变电路。
工作原理 图1中 LH代表含有加热工件的感应线圈。为了提高负载端功率因数,用负载补偿电容CH与LH相串联,组成串联谐振式负载电路。其固有谐振角频率可近似表示为由串联谐振电路分析可知,若外加电源的角频率ω=ω0,电路处于谐振状态并呈纯阻性;若ω〈ω0,则电路因处于低端失谐而呈容性。
图中逆变主电路采用桥式结构,桥中每一导电臂由普通晶闸管及反并联二极管组成。当T1T3(或D1D3)导通而T2T4(或D2D4)阻断时,逆变输出电压ua=Ud;当T2T4(或D2D4)导通而T1T3(或D1D3)阻断时,ua=-Ud。当桥对角线开关元件(T或D)轮番通断时,u0为交变方波,其幅值为Ud,重复频率则取决于T1~T4的门极控制脉冲,uа波形如图2a。
当门极脉冲ug的重复角频率ω〈ω0时,正弦负载电流iа超前于负载电压uа 的基波分量 ua1一个角度φ。因此在图2b中当ωt=θ1时,iа=0,ug2、4=0,uа=Ud,因此T2和T4不能导通,而是D1和D3相继导通,D1的正向导通压降Ug作为 T1的反压。当φ>ωtq(tq为晶闸管关断时间)时,T1便可靠关断,T1和D1中电流iT1和iD1 波形如图2c。
串联逆变电路的直流电源可以用不控整流电路实现,因而主电路较为简单。为了调节逆变输出功率和实现故障保护,在并联逆变电路中必须采用可控整流电路,而在串联逆变电路中上述两种功能均可用其他方法实现,因而可采用不控整流电路。
应用领域 和并联逆变电路一样,串联逆变电路可用以构成静止式中频加热电源。它具有主电路简单、起动性能好的优点,但负载适应性较差,故只适用于负载变化不大但又需要频繁起动的场合。
工作原理 图1中 LH代表含有加热工件的感应线圈。为了提高负载端功率因数,用负载补偿电容CH与LH相串联,组成串联谐振式负载电路。其固有谐振角频率可近似表示为由串联谐振电路分析可知,若外加电源的角频率ω=ω0,电路处于谐振状态并呈纯阻性;若ω〈ω0,则电路因处于低端失谐而呈容性。
图中逆变主电路采用桥式结构,桥中每一导电臂由普通晶闸管及反并联二极管组成。当T1T3(或D1D3)导通而T2T4(或D2D4)阻断时,逆变输出电压ua=Ud;当T2T4(或D2D4)导通而T1T3(或D1D3)阻断时,ua=-Ud。当桥对角线开关元件(T或D)轮番通断时,u0为交变方波,其幅值为Ud,重复频率则取决于T1~T4的门极控制脉冲,uа波形如图2a。
当门极脉冲ug的重复角频率ω〈ω0时,正弦负载电流iа超前于负载电压uа 的基波分量 ua1一个角度φ。因此在图2b中当ωt=θ1时,iа=0,ug2、4=0,uа=Ud,因此T2和T4不能导通,而是D1和D3相继导通,D1的正向导通压降Ug作为 T1的反压。当φ>ωtq(tq为晶闸管关断时间)时,T1便可靠关断,T1和D1中电流iT1和iD1 波形如图2c。
串联逆变电路的直流电源可以用不控整流电路实现,因而主电路较为简单。为了调节逆变输出功率和实现故障保护,在并联逆变电路中必须采用可控整流电路,而在串联逆变电路中上述两种功能均可用其他方法实现,因而可采用不控整流电路。
应用领域 和并联逆变电路一样,串联逆变电路可用以构成静止式中频加热电源。它具有主电路简单、起动性能好的优点,但负载适应性较差,故只适用于负载变化不大但又需要频繁起动的场合。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条