说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 交换零因子半群
1)  Commutative zero-divisor semigroup
交换零因子半群
2)  zero-divisor semigroup
零因子半群
1.
In this paper,we study the zero-divisor semigroups of tournaments.
讨论了竞赛图的零因子半群。
2.
The zero-divisor semigroups of several simple graphs are investigated,and the formulas to count the numbers of non-isomorphic zero-divisor semigroups corresponding to graphs J(v,k,i),K2,2,…,2 and K2,2,…,2+{c} are obtained,respectively.
讨论了几类简单图的零因子半群,完全决定了图J(v,k,i),K2,2,…,2和K2,2,…,2+{c}的互不同构的零因子半群的数目,并给出了相应的计数公式。
3)  commutative semi-group
交换半群
1.
In this paper,a kind of graph structure of a commutative semi-group S with zero element is defined and studied.
在交换半群上定义了一种图结构 ,并对相应的图的性质进行了描述。
2.
In this paper,a new commutative semi-group is established,and the results of the papers "the Expression Form of a Commutative Semi-group"and "the Extension and Application of Commutative Semi-group" are genelized and strengthed.
建立了一类新的交换半群,对《一个交换半群的元素的表示形式》、《一个交换半群的推广与应用》两文中半群的元素表示形式和结果进行了推广与加强。
3.
Based on the number set,a new commutative semi-group is established in the integer number and extended in number fields of rational number,real number and the complex number.
在数集的基础上,在整数域上建立了一个新的交换半群,并在有理数域、实数域和复数域上进行了推广;作为应用,讨论了其元素的表示形式。
4)  commutative semigroup
交换半群
1.
Results: A series of equivalent conditions about judging p-semisimple element in BCH-algebra are given,and it proves that a commutative semigroup may be induced by a p-semisimple element in BCHalgebra.
结果:给出了p-半单元的一系列等价条件,证明了由每一个p-半单元可以诱导出一个交换半群,并给出了该交换半群成为交换群的条件。
2.
This paper considers the structure of free product of commutative semigroups and gives the structure of their maximal semilattice quotient and Archimedean components.
讨论交换半群的自由积的构造 ,给出其极大半格商及阿基米德分量的构
3.
In this paper,we first provide the existence theorems of fixed points for commutative semigroups of nonexpansive mappings in general Banach spaces.
主要在一般Banach空间中给出了非扩张交换半群不动点存在性定理,推广了Suzuki和Takahashi等人的相关工作。
5)  meta-abelian group
半交换群
6)  non-commutative clomain
无零因子非交换环
补充资料:幂零半群


幂零半群
ralpotent semi-group

幂零半群[司脚触吐涨”‘一沙叨p;。,二‘noTeoT皿明。o几犷-pyn“a] 具有零元的半群(~一脚uP)S,且存在n使得罗=0.这等价于S中的恒等式 xl”‘x。二yl‘’‘y。·对于给定的半群,满足上述性质的最小的n称为幂零级(stePof司potency)或幂零类(cla义of汕potency).如果S’=O,则S称为具有零乘法的半群(se而一groupwith~甘山拓pliCa石on).下列关于半群S的条件等价:1)S是幂零的;2)5有一个有限零化子序列(即一个有限长度的升零化子序列,见诣零半群(nil semi一grouP));3)存在k使得S的每个子半群都可作为一个长度(k的理想序列被嵌人. 更为广泛的概念是Ma月H那B意义下的幂零半群(【2』).该名称指这样的半群,对于某个。,它满足恒等式 戈,Y。,其中字戈和Y。归纳地定义如下:X0=x,Y。=y,戈=戈一:u,Y。一,Y。=欢_lu。Xn_,,这里x,夕和“。,…,“。全是变量.一个群是Ma月玉u”B意义下的幂零半群,当且仅当它在通常群论意义下是幂零的(见幕零群(面训七以gro叩)),而恒等式戈=玖等价于这样的事实:该群的幕零类簇n.满足等式戈二Y。的消去半群可嵌人到一个满足同样等式的群中.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条