说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> ∨-生成子稠交换子空间格
1)  ∨-generators dense and commutative lattice
∨-生成子稠交换子空间格
2)  commutative subspace lattice
交换子空间格
1.
Let L be a commutative subspace lattice on H of Hilbert space and let Alg L be a related subspace lattice algebra.
设L是H ilbert空间H中的交换子空间格,AlgL是相应的子空间格代数,K是AlgL中弱闭的Lie理想,证明了I=Ik=wk-clspan{LTL⊥:T∈K,L∈L}是AlgL中弱闭的原子对角不交理想。
2.
Firstly we give a characterization of the commutative subspace lattice L which is with T(N)=R+alg L,where R is a special subspace of nest algebra T(N),and obtain the sufficient and necessary condition of T(N)to be decomposed into the direct sum of its diagonal and its ideals(i.
刻划了满足条件的交换子空间格L的结构,其中R是套代数的某一特殊子空间;得到了套代数分解成对角代数与某些特殊理想(例如:Jacobson根或者Larson理想)的直和的充要条件,同时也刻划了的一个范数闭左理想上J_N最后,研究了对角代数与某些超因果理想直和的结构。
3.
Completely distributive and commutative subspace lattice(CDCSL for short) al-gebra is an important class of non-selfadjoint reflexive operator algebras.
完全分配交换子空间格代数是一类重要的非自伴、自反算子代数。
3)  V-generators dense lattice
V-生成子稠格
1.
Furthermore, a class of lattices called V-generators dense lattices is introduced, which strictly includes the class of completely distributive lattices and the class of pentagon lattices.
设L是赋范线性空间上的子空间格,一个子空间是自反AlgL-模的充分必要条件被得到,当L是完全分配子空间格时,自反AlgL-模的二次交换子被描述,进而,本文引入V-生成子稠格,这是一种严格地包含了完全分配格和五角格的格类。
4)  algebra of commutative subspace lattice
交换子空间格代数
1.
The objective of this paper is to study the finite rank operator in the weakly closed modules of the algebra of commutative subspace lattice.
定义了子空间格代数的 (弱闭双边 )模 ,对交换子空间格代数的模中的有限秩算子进行了讨论 ,得到模中含有有限秩算子与含有秩 1算子是等价的及模交换子的性
5)  completely distributive and commutative subspace lattice
完全分配交换子空间格
6)  commutator space
交换子空间
1.
By using the canonical matrix which is similar to a matrix over semi closed field this paper,arrives at the conclusion that commutator space coincides with its zero trace space,which is the same as over closed field.
本文通过半闭域上矩阵相似的标准形,推出了在半闭域上也有结论:其交换子空间与零迹子空间重
补充资料:亏子空间


亏子空间
eficiency subspace ^ defect subspace, defective subspace

亏子空间【山反妇娜田加,ce或山免以s而p暇,山丘尤tivesubspaCe;八e中eKTooe no皿n一oeTpaoeT.1,算子的 算子A,二A一又I的值域兀二{y=(A一又I)x:x任D,}的正交补D,,其中A是定义于Hilbert空间H中的线性流形D,上的线性算子,而几是A的一个正则值(正则点).这里,一个算子A的正则值(比孚血r从司ueofanoperator)理解为参数又的一个值,使方程(A一又I)x二y对任何y有唯一的解,而算子(A一又I)”是有界的,即A的预解式(~l-瓤)(A一又I)一‘有界.当又变化时,亏子空间D*也随着变化,但是对属于A的全部正则值构成的开集的一个连通分支的一切之,亏子空间D*的维数是相同的. 如果A是一个具有稠密定义域几的对称算子,它的正则值的连通分支是上半及下半平面.在这一情形下,D*一{x任D矛:A’二一Ix},其中A’是A的伴随算子,而亏量叭二djln只及。一dimD一,均称为算子A的(正的及负的)亏指数(由反记ncy indi-渭of an opemtor).此外 D,·=D,OD:①D_,,即D,·是D,,D‘,D_,的直和.因而,如果n十=作_=O,那么算子A是自共扼的;否则,一个对称算子的亏子空间便刻画了它偏离一个自共扼算子的程度. 亏子空间在构造对称算子到极大算子或自共扼算子(超极大算子)的扩张中起着重要作用.[种比,工圆粼出阴摹丁即牛脚粤LI七g切以J仙‘Ulano拌rator)的定义不十分正确而应理解如下.值又是A的一个正则值,如果存在正数介=k(劝>O,使得对一切x6几,}(A一久I)x]})kl{xj}成立.在这种情形下,A一又I的核仅由零向量组成,且A一又I的象是闭的(但不必等于整个空间).王声望译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条