说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 脉冲微分-积分不等式
1)  impulsive differential-integro inequality
脉冲微分-积分不等式
2)  impulsive integral inequalities
脉冲积分不等式
1.
Sufficient conditions for boundedness of solutions of nonlinear delay differential equations with impulses are established by using impulsive integral inequalities with a deviation.
利用时滞脉冲积分不等式,给出了一类非线性的脉冲时滞微分方程的解有界性的充分条件。
2.
Moreover, some effcient estimations for solutions of impulsive integral inequalities are also obtained by proper transformations.
通过选择适当的变换,文中得到了若干具分段常数变元的脉冲积分不等式解的有效估计。
3)  impulsive differential inequality
脉冲微分不等式
1.
Consider the first order impulsive differential inequalityy′(t)+My(t)+N|y(t)|≥0,a.
考虑一阶脉冲微分不等式y′(t) +My(t) +N |y(t) |≥ 0 ,a。
4)  integrodifferential inequality
积分微分不等式
1.
A new integrodifferential inequality is established.
建立了一个新的积分微分不等式。
5)  differential inequality with delay and impulse
带延时及脉冲的微分不等式
1.
By using the differential inequality with delay and impulse, several sufficient conditions are established to guarantee the impulsive neural network has a globally exponentially stable periodic solution.
利用带延时及脉冲的微分不等式,得到了几个充分条件来保证这个脉冲神经网络具有一个全局指数稳定的周期解。
6)  delay integrodifferential inequalities
延滞微分-积分不等式
补充资料:Harnack不等式(对偶Harnack不等式)


Harnack不等式(对偶Harnack不等式)
quality (dual Hatnack inequality) Harnack in-

【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条