1) Hermite-Fejér polynomial

Hermite-Fejér多项式
2) Hermite polynomial

Hermite多项式
1.
Based on Karman equation, nonlinear problems of circular plates under the actionof combined loads in transverse direction and neutral plan are analyzed,taking Hermite polynomialas a trial function,and weighted residual method being used.
分析是以Karman方程为基础、取Hermite多项式为试函数用加权残数法进行的。
2.
In this paper, the generalized Hermite polynomials are considered for spectral methods.

将古典的Hermite多项式推广到广义的形式,并讨论了利用广义的Hermite多项式作为基函数的谱方法的逼近性质。
3.
In order to improve the transfinte interpolation surfaces, two kinds of C1-continuity Coons patches with shape parameter were constructed by two classes of λ-Hermite polynomial functions on triangles.
针对三角形域上超限插值的曲面缺乏形变的特点,利用两类带形状参数的Hermite多项式构造C1连续的两种格式的带形状参数的Coons曲面片。
3) Hermite polynomials

Hermite多项式
1.
The equiralence of two different differential representations of Hermite polynomials is demonstrated by means of two methods.
用两种方法证明了Hermite多项式的两种微分表示是恒等的。
2.
It is proved that if the zeros of Hermite polynomials are taken as the interpolation nodes, then holds, n→∞, where f(x) is any continuous function on the real line that satisfies |f(x)|=
考虑了拓展插值结点取值范围后的Gr nwald插值算子在实数轴上的收敛性,证明了将结点范围扩大到全实轴后,即取为Hermite多项式的零点,对任意点x∈(-∞,∞),有Gn(f,x)→f(x),n→∞,其中,f(x)为实数轴上任一满足|f(x)|=O(ex2/2)的连续函数。
3.
In this paper,a product formula for Hermite polynomials is obtained.

推导出多个Hermite多项式的乘积公式。
4) q-Hermite polynomials

q-Hermite多项式
5) H-Hermite polynomials

H-Hermite多项式
1.
Basing on cubic H-Hermite polynomials,a new type of curve called cubic H-Cardinal spline curves constructed by a set of special basis functions is presented.
基于三次H-Hermite多项式得出一组特殊的基函数,由此基函数生成的曲线称之为三次H-Cardinal样条曲线,是Cardinal样条曲线的推广。
6) Tchebycheff Hermite multinomial

Tchebycheff-Hermite多项式
1.
This paper extends the Roll theorem and with the result, discusses the distribution of zero point in the Legender and Tchebycheff Hermite multinomials.
推广了Roll定理,并用该结果讨论了Legender多项式和Tchebycheff-Hermite多项式零点分布。
补充资料:Fejér求和法
Fejér求和法
Fejer summation method
Fej台求和法【肠攀r,口n“.咏犯n妞d洲卜.e‘ePa MeT叭eyMM.po皿.。:] 一种适用于FouJ能r级数求和的算术平均求和法(ari让mrti因a记rag乏,sun刀们以。onn犯t址记of).这种方法是L.州扛首先应用的(〔11). 函数f(x)任L(一二,7z)的F~级数 合+。睿,(·。姗一+。。S,二)(、)按则食求和法是可和的,其和为函数s(x),如果 悠。(x)=S(x),其中 ,_‘x、一上一夕、汀二、.。2) n叫卜i丘二0而s*(x)是(1)的部分和. 如果x是函数f(x)的连续点或第一类间断点,则这个函数的Fo此r级数在点x上是Fej色r可和的,其和分别为f(x)和(f(x+0)+f(x一0))/2.如果f(x)在某一区间(a,b)上是连续的,则它的Fou-滋级数在每个区间压,川C(a,b)上是一致F句打可和的;而如果f(x)是处处连续的,则它的Fo~级数在卜二,司上是可和的,其和为f(x)(州德r定理(殉改th印咖))· H.址b留粤屺(【2J)加强了这个结果,他证明:对于每个可和函数f(x),它的Fourler级数是几乎处处可和的,其和为f(x). 函数 凡“’一击红争睿,一〕- _l「s加(n+l)(二/2)〕, 2(n+l)L sin(x/2)]称为殉蔚俘〔殉食kemel).可以用它把f(‘)的Fe-j食平均(2)表示为下列形式: 。‘,、一上If‘二+。、、‘“、J:. 兀蕊【补注】亦见C滋ro求和法(C台么ro sun加以由nn此th-‘劝s).张鸿林译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条