说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 体变方程
1)  The dilatation equation
体变方程
2)  motion equation of variable-mass objects
变质量物体运动方程
3)  Rheological Equation
流变方程
1.
Rheological model and rheological equation of sullage soft soil under dynamic loading;
动载作用下淤泥质软土流变模型与流变方程
2.
The common rheological equation was educed, and the rheological equation for samples was gained through testing the dynamic and steady rheological parameters.
以浆体流变力学、粘弹性力学为基础 ,通过对似膏体充填料浆的微观结构分析 ,建立了其广义粘弹塑性流变模型 ,推导出流变方程的一般表达式 ;通过稳态和动态剪切条件下流变特性和流变参数的测试 ,得出了似膏体充填料浆的流变方程 。
3.
An empirical rheological equation“ln τ+τ=a 0+a 1+a 2 ln ”was obtained for the slurry by datafitting.
对所测模拟湿法磷酸氨化料浆的流变性数据 ,进行回归处理并加以分析 ,提出了一个三参数的经验流变方程 ,它比通常采用的幂律模型能更好地描述湿法磷酸氨化料浆的流变特性 ,可供磷铵工业设计与生产操作参
4)  variational equation
变分方程
1.
This paper studies some complex analysis problems associated with differiential equationa and obtains a series of conclusions,these conclusions will be the key point in the studying of variational equations.
讨论了一些有关微分方程的复杂的分析问题并得到一系列结论,这些结论在变分方程的研究中起关键作用。
2.
The dynamic variational equation of thin circular plate is derived first.
首先推导出圆薄板的动力变分方程 ,用Galerkin法得到一个三次非线性振动方程 ,用Flouquet指数和Melnikov方法分别研究了圆板的分岔问题和可能发生的混沌振
3.
We show that the value function satisfies a free_boundary problem, prove the existence of the optimal policy by variational equation and get the optimal policy.
给出了价值函数满足的自由边界,用求解变分方程的方法证明了最优控制的存在性,并找到了最优控制策略。
5)  creep equation
蠕变方程
1.
According to the principle that Roberts had put forward, a flow stress model of steel with creep equation has been set up and used to predict the flow stress under different deforming conditions.
对不同变形条件下的流变应力-应变关系进行了分析,并利用Roberts提出的思想,用扩展了的蠕变方程建立了实验钢的流变应力模型,对不同变形条件下的流变应力进行了预测。
2.
Through the test, this paper studies the creep properties of the mudstone taken from Li Yazhuang colliery and the effects of creeping on the mudstone's compres-sive strength, and sets up the creep equations applied to describe the creep characteristic of the mudstone using the rheological mechanics model.
从试验入手,研究了李雅庄矿泥岩的蠕变性质及蠕变对其抗压强度的影响,并利用流变力学模型,建立了描述该泥岩的蠕变性质的蠕变方程。
3.
This paper expounds the testing methods of the creep of geosynthetics, analyzes on the factors influencing the creep and the creep equation, and probes into the research directions in the future.
论述了土工合成材料蠕变的试验方法,分析了影响蠕变的因素和蠕变方程,探讨了今后的研究方向。
6)  variation equation
变分方程
1.
Because the items be introduced,difference of composite with imperfect interface from one with perfect interface is that stationary value principles of the former is no longer equivalent of variation equations corresponding the principles.
与完美界面不同的是,由于这个积分项的引入,非完美界面复合材料的驻值原理不再与相应的变分方程等价。
2.
This paper discusses a variation equation problem in a class of singular stochastic control with stopping time,gives its solution under two different conditions,which is a one order continuous differentiable and concave function,and gives the exact form.
讨论了一类带停时的奇异型随机控制问题中的一个变分方程问题,并且在两种不同的情况下给出了该变分方程的解,即为一阶连续可导凹函数,并在两种情况下给出了此函数的具体形式。
3.
A quadratic nonlinear differential equation is obtained by the method of from nonlinear dynamical variation equation and compatible equation of flat conical shell under the boundary conditions of clamped edges.
由扁锥壳的非线性动力学变分方程和协调方程,在夹紧固定的边界条件下,用Galerkin方法得到一个含二次项的非线性微分方程。
补充资料:变分方程


变分方程
variational equations iS equations in variation

  变分方程组则“具有拟多项式的右方”.自治系统沿周期解(殆周期解)的变分方程是具有周期(殆周期)系数的线性微分方程组(见周期系数的线性微分方程组(l~r system of diffel℃Iltial equa加ns witll Per-iodic eoell记ients);殆周期系数的线性微分方程组(]i“既s”把m ofdi浅I-e 11tiajequa加拙withahl℃stperiod-ic coeffieients)). 上面给的定义适用于任意阶方程.例如,摆方程无十田Zsinx二O在下平衡位置(x=O,又二0)的变分方程(如果只有相空间中的初始点变化)是义+田Zx二O,称为摆的小振动方程(叫Llation for srnaU oscilia-tions of ape们(11llum),而在上平衡位置(x=冗,交=0)的变分方程是义一。Zx=0.对于微分流形上的微分方程,解的变分方程可以类似于上面讲过的R”上的情况来定义;变分方程的解之值在流形的切丛中.有两种方法把任意微分流形的情况化为R”的情况,第一种是把流形嵌入一个维数充分高的Euclid空问中,决仁把微分方程(向量场)拓展到一个邻域中去,第二种方法是在轨道的一个邻域中,用一个坐标卜中的坐标写出定义于微分流形上的微分方程,而这个坐标卡的选取光滑依赖于此点(例如,在Rlel刀ann流形上应用指数测地映射).这样就可以把这个方程写成R门上的方程,而且‘(和第一种化法一样)其右方和流形上的微分方程的右方(即向量场)有相同的光滑性.对于R~流形上的微分方程又二F(x),若不改变F,则其沿轨道戊(t)的变分方程可以写成 V:(二(,))r=V rF(x(t)),这里V。是共变导数(covdnant derivati祀).一个微分映射/:丫~尸(V”是一微分流形)沿着轨道毛.厂‘x}r。,的变分方程(若不变动f)是方程 犷(亡+I)一dff,:r(t);这方程之解犷(·)在t点取值于V”在点f『x处的切空间兀,*V”中,而解本身就是序列 {d(j,)叉若},。z,否〔双V”,d(f勿)义即f的m阶迭代在x之导数. 令V月为闭微分流形.映V”到V”上的c,类微分同胚厂之集合可赋以C’拓扑.以下的断言是成立的(见!4]):l)对每一个kc{l,…,n},瓜n,OB特征指数(Lyapunov cll田飞Icte比tic exPonent)几一(j,·,一R*。票,,,。潍。瓦令h,dft:一 (2)这里G*(双沪)是切空间双俨的k维向量子空间所成的G秘Inalm流形.它是一个第二B苗比类(B姗elass巴)函数又。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条